What is the rigor behind U subsitution?U-Substitution IntuitionAttempted proof of the first part of the Fundamental Theorem of CalculusEvaluating definite integrals whose limits are absolutely equalProve one limit$limlimits_mtoinftyfrac1msum_n=1^mcosleft(frac2pi n xbright)$ to a definite integralRiemann sums to find limitsCan we change $triangle$ratio of Riemann integral? $int_a^b f(x)(a(dx))^b(dx)quad a,bin mathbb R^neq0$Riemann Sum of Ratio of Equation of Lines$int _0^axleft(1-fracxaright)dx:$ using Riemann SumsA question on the limit $lim limits_n rightarrow infty n sum limits_j=1^n fraccos(fracnj)f(fracnj)j^2$Limit of the sum using integral

Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?

Do infinite dimensional systems make sense?

What's that red-plus icon near a text?

Why is 150k or 200k jobs considered good when there's 300k+ births a month?

How much of data wrangling is a data scientist's job?

Does detail obscure or enhance action?

expand `ifthenelse` immediately

RSA: Danger of using p to create q

Convert two switches to a dual stack, and add outlet - possible here?

Theorems that impeded progress

Modeling an IP Address

What does it mean to describe someone as a butt steak?

I'm flying to France today and my passport expires in less than 2 months

Can I ask the recruiters in my resume to put the reason why I am rejected?

Does object always see its latest internal state irrespective of thread?

What defenses are there against being summoned by the Gate spell?

Is it unprofessional to ask if a job posting on GlassDoor is real?

What does "Puller Prush Person" mean?

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?

Why is Minecraft giving an OpenGL error?

Watching something be written to a file live with tail

Why is consensus so controversial in Britain?

Unable to deploy metadata from Partner Developer scratch org because of extra fields

Was any UN Security Council vote triple-vetoed?



What is the rigor behind U subsitution?


U-Substitution IntuitionAttempted proof of the first part of the Fundamental Theorem of CalculusEvaluating definite integrals whose limits are absolutely equalProve one limit$limlimits_mtoinftyfrac1msum_n=1^mcosleft(frac2pi n xbright)$ to a definite integralRiemann sums to find limitsCan we change $triangle$ratio of Riemann integral? $int_a^b f(x)(a(dx))^b(dx)quad a,bin mathbb R^neq0$Riemann Sum of Ratio of Equation of Lines$int _0^axleft(1-fracxaright)dx:$ using Riemann SumsA question on the limit $lim limits_n rightarrow infty n sum limits_j=1^n fraccos(fracnj)f(fracnj)j^2$Limit of the sum using integral













0












$begingroup$


$ int f(g(x)) dx = int frac f(u)u' du$



requires that



$ int f(x) dx = int f(x) cdot dx$



but dx just represents the variable that F(x) +c is a function of. So why is it legal for dx to be treated algebriacally?



I tried investigating this property by using riemann summation:



$limlimits_n to infty(sum_k=1^n f(frackxn )fracxn) = int_0^x f(t)dt= (F(x)+c)-(F(0)+c)$



and so you can define



$ limlimits_n to infty (sum_k=1^n f(frackxn )fracxn)+F(0)+c) = int f(x) dx$



you can write $fracxn = dx$ and $kfracxn=kdx= x_k$



then you have



$ limlimits_n to infty (sum_k=1^n f(x_k)dx)+F(0)+c) = int f(x) dx$



since dx is being written to be multiplied by the series, then you can define dx in different terms to aquire an integral in terms of other variables.



but that exists only in abstraction. I can't quite sufficiently complete the task of doing so.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Glados.Perhaps of interest: en.m.wikipedia.org/wiki/Integration_by_substitution
    $endgroup$
    – Peter Szilas
    Mar 29 at 10:49











  • $begingroup$
    You might find this post interesting: math.stackexchange.com/questions/3114746
    $endgroup$
    – Michael Rybkin
    Mar 29 at 10:52






  • 1




    $begingroup$
    Are you talking about definite or indefinite integration? For indefinite integrals (antiderivatives), it nothing but the chain rule.
    $endgroup$
    – Hans Lundmark
    Mar 29 at 10:53










  • $begingroup$
    I appreciate it but I am more looking in to rigor rather than intuition.
    $endgroup$
    – GLaDOS
    Mar 29 at 10:54















0












$begingroup$


$ int f(g(x)) dx = int frac f(u)u' du$



requires that



$ int f(x) dx = int f(x) cdot dx$



but dx just represents the variable that F(x) +c is a function of. So why is it legal for dx to be treated algebriacally?



I tried investigating this property by using riemann summation:



$limlimits_n to infty(sum_k=1^n f(frackxn )fracxn) = int_0^x f(t)dt= (F(x)+c)-(F(0)+c)$



and so you can define



$ limlimits_n to infty (sum_k=1^n f(frackxn )fracxn)+F(0)+c) = int f(x) dx$



you can write $fracxn = dx$ and $kfracxn=kdx= x_k$



then you have



$ limlimits_n to infty (sum_k=1^n f(x_k)dx)+F(0)+c) = int f(x) dx$



since dx is being written to be multiplied by the series, then you can define dx in different terms to aquire an integral in terms of other variables.



but that exists only in abstraction. I can't quite sufficiently complete the task of doing so.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Glados.Perhaps of interest: en.m.wikipedia.org/wiki/Integration_by_substitution
    $endgroup$
    – Peter Szilas
    Mar 29 at 10:49











  • $begingroup$
    You might find this post interesting: math.stackexchange.com/questions/3114746
    $endgroup$
    – Michael Rybkin
    Mar 29 at 10:52






  • 1




    $begingroup$
    Are you talking about definite or indefinite integration? For indefinite integrals (antiderivatives), it nothing but the chain rule.
    $endgroup$
    – Hans Lundmark
    Mar 29 at 10:53










  • $begingroup$
    I appreciate it but I am more looking in to rigor rather than intuition.
    $endgroup$
    – GLaDOS
    Mar 29 at 10:54













0












0








0


1



$begingroup$


$ int f(g(x)) dx = int frac f(u)u' du$



requires that



$ int f(x) dx = int f(x) cdot dx$



but dx just represents the variable that F(x) +c is a function of. So why is it legal for dx to be treated algebriacally?



I tried investigating this property by using riemann summation:



$limlimits_n to infty(sum_k=1^n f(frackxn )fracxn) = int_0^x f(t)dt= (F(x)+c)-(F(0)+c)$



and so you can define



$ limlimits_n to infty (sum_k=1^n f(frackxn )fracxn)+F(0)+c) = int f(x) dx$



you can write $fracxn = dx$ and $kfracxn=kdx= x_k$



then you have



$ limlimits_n to infty (sum_k=1^n f(x_k)dx)+F(0)+c) = int f(x) dx$



since dx is being written to be multiplied by the series, then you can define dx in different terms to aquire an integral in terms of other variables.



but that exists only in abstraction. I can't quite sufficiently complete the task of doing so.










share|cite|improve this question









$endgroup$




$ int f(g(x)) dx = int frac f(u)u' du$



requires that



$ int f(x) dx = int f(x) cdot dx$



but dx just represents the variable that F(x) +c is a function of. So why is it legal for dx to be treated algebriacally?



I tried investigating this property by using riemann summation:



$limlimits_n to infty(sum_k=1^n f(frackxn )fracxn) = int_0^x f(t)dt= (F(x)+c)-(F(0)+c)$



and so you can define



$ limlimits_n to infty (sum_k=1^n f(frackxn )fracxn)+F(0)+c) = int f(x) dx$



you can write $fracxn = dx$ and $kfracxn=kdx= x_k$



then you have



$ limlimits_n to infty (sum_k=1^n f(x_k)dx)+F(0)+c) = int f(x) dx$



since dx is being written to be multiplied by the series, then you can define dx in different terms to aquire an integral in terms of other variables.



but that exists only in abstraction. I can't quite sufficiently complete the task of doing so.







calculus integration riemann-sum






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 29 at 10:34









GLaDOSGLaDOS

133




133











  • $begingroup$
    Glados.Perhaps of interest: en.m.wikipedia.org/wiki/Integration_by_substitution
    $endgroup$
    – Peter Szilas
    Mar 29 at 10:49











  • $begingroup$
    You might find this post interesting: math.stackexchange.com/questions/3114746
    $endgroup$
    – Michael Rybkin
    Mar 29 at 10:52






  • 1




    $begingroup$
    Are you talking about definite or indefinite integration? For indefinite integrals (antiderivatives), it nothing but the chain rule.
    $endgroup$
    – Hans Lundmark
    Mar 29 at 10:53










  • $begingroup$
    I appreciate it but I am more looking in to rigor rather than intuition.
    $endgroup$
    – GLaDOS
    Mar 29 at 10:54
















  • $begingroup$
    Glados.Perhaps of interest: en.m.wikipedia.org/wiki/Integration_by_substitution
    $endgroup$
    – Peter Szilas
    Mar 29 at 10:49











  • $begingroup$
    You might find this post interesting: math.stackexchange.com/questions/3114746
    $endgroup$
    – Michael Rybkin
    Mar 29 at 10:52






  • 1




    $begingroup$
    Are you talking about definite or indefinite integration? For indefinite integrals (antiderivatives), it nothing but the chain rule.
    $endgroup$
    – Hans Lundmark
    Mar 29 at 10:53










  • $begingroup$
    I appreciate it but I am more looking in to rigor rather than intuition.
    $endgroup$
    – GLaDOS
    Mar 29 at 10:54















$begingroup$
Glados.Perhaps of interest: en.m.wikipedia.org/wiki/Integration_by_substitution
$endgroup$
– Peter Szilas
Mar 29 at 10:49





$begingroup$
Glados.Perhaps of interest: en.m.wikipedia.org/wiki/Integration_by_substitution
$endgroup$
– Peter Szilas
Mar 29 at 10:49













$begingroup$
You might find this post interesting: math.stackexchange.com/questions/3114746
$endgroup$
– Michael Rybkin
Mar 29 at 10:52




$begingroup$
You might find this post interesting: math.stackexchange.com/questions/3114746
$endgroup$
– Michael Rybkin
Mar 29 at 10:52




1




1




$begingroup$
Are you talking about definite or indefinite integration? For indefinite integrals (antiderivatives), it nothing but the chain rule.
$endgroup$
– Hans Lundmark
Mar 29 at 10:53




$begingroup$
Are you talking about definite or indefinite integration? For indefinite integrals (antiderivatives), it nothing but the chain rule.
$endgroup$
– Hans Lundmark
Mar 29 at 10:53












$begingroup$
I appreciate it but I am more looking in to rigor rather than intuition.
$endgroup$
– GLaDOS
Mar 29 at 10:54




$begingroup$
I appreciate it but I am more looking in to rigor rather than intuition.
$endgroup$
– GLaDOS
Mar 29 at 10:54










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let's prove that $int_a^b h(g(x)) g^prime(x) dx=int_g(a)^g(b) h(u) du$ for $g$ monotonic on $[a,,b]$ with $a<b$. Let $H$ denote an antiderivative of $h$, without loss of generality satisfying $H(a)=0$. Then the right-hand side of the putative result is $H(g(b))-H(g(a))$. Differentiating this with respect to $b$ gives $h(g(b)) g^prime(b)$, so $H(g(b))-H(g(a))=int_a^b h(g(x)) g^prime(x) dx$ as required.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I really like this one because it doesn't require the multiplication property of dx.
    $endgroup$
    – GLaDOS
    Mar 29 at 11:28










  • $begingroup$
    But can you prove it for indefinite integral?
    $endgroup$
    – GLaDOS
    Mar 29 at 11:44






  • 1




    $begingroup$
    @GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
    $endgroup$
    – J.G.
    Mar 29 at 12:02












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166984%2fwhat-is-the-rigor-behind-u-subsitution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Let's prove that $int_a^b h(g(x)) g^prime(x) dx=int_g(a)^g(b) h(u) du$ for $g$ monotonic on $[a,,b]$ with $a<b$. Let $H$ denote an antiderivative of $h$, without loss of generality satisfying $H(a)=0$. Then the right-hand side of the putative result is $H(g(b))-H(g(a))$. Differentiating this with respect to $b$ gives $h(g(b)) g^prime(b)$, so $H(g(b))-H(g(a))=int_a^b h(g(x)) g^prime(x) dx$ as required.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I really like this one because it doesn't require the multiplication property of dx.
    $endgroup$
    – GLaDOS
    Mar 29 at 11:28










  • $begingroup$
    But can you prove it for indefinite integral?
    $endgroup$
    – GLaDOS
    Mar 29 at 11:44






  • 1




    $begingroup$
    @GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
    $endgroup$
    – J.G.
    Mar 29 at 12:02
















0












$begingroup$

Let's prove that $int_a^b h(g(x)) g^prime(x) dx=int_g(a)^g(b) h(u) du$ for $g$ monotonic on $[a,,b]$ with $a<b$. Let $H$ denote an antiderivative of $h$, without loss of generality satisfying $H(a)=0$. Then the right-hand side of the putative result is $H(g(b))-H(g(a))$. Differentiating this with respect to $b$ gives $h(g(b)) g^prime(b)$, so $H(g(b))-H(g(a))=int_a^b h(g(x)) g^prime(x) dx$ as required.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I really like this one because it doesn't require the multiplication property of dx.
    $endgroup$
    – GLaDOS
    Mar 29 at 11:28










  • $begingroup$
    But can you prove it for indefinite integral?
    $endgroup$
    – GLaDOS
    Mar 29 at 11:44






  • 1




    $begingroup$
    @GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
    $endgroup$
    – J.G.
    Mar 29 at 12:02














0












0








0





$begingroup$

Let's prove that $int_a^b h(g(x)) g^prime(x) dx=int_g(a)^g(b) h(u) du$ for $g$ monotonic on $[a,,b]$ with $a<b$. Let $H$ denote an antiderivative of $h$, without loss of generality satisfying $H(a)=0$. Then the right-hand side of the putative result is $H(g(b))-H(g(a))$. Differentiating this with respect to $b$ gives $h(g(b)) g^prime(b)$, so $H(g(b))-H(g(a))=int_a^b h(g(x)) g^prime(x) dx$ as required.






share|cite|improve this answer









$endgroup$



Let's prove that $int_a^b h(g(x)) g^prime(x) dx=int_g(a)^g(b) h(u) du$ for $g$ monotonic on $[a,,b]$ with $a<b$. Let $H$ denote an antiderivative of $h$, without loss of generality satisfying $H(a)=0$. Then the right-hand side of the putative result is $H(g(b))-H(g(a))$. Differentiating this with respect to $b$ gives $h(g(b)) g^prime(b)$, so $H(g(b))-H(g(a))=int_a^b h(g(x)) g^prime(x) dx$ as required.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 29 at 10:48









J.G.J.G.

32.6k23250




32.6k23250











  • $begingroup$
    I really like this one because it doesn't require the multiplication property of dx.
    $endgroup$
    – GLaDOS
    Mar 29 at 11:28










  • $begingroup$
    But can you prove it for indefinite integral?
    $endgroup$
    – GLaDOS
    Mar 29 at 11:44






  • 1




    $begingroup$
    @GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
    $endgroup$
    – J.G.
    Mar 29 at 12:02

















  • $begingroup$
    I really like this one because it doesn't require the multiplication property of dx.
    $endgroup$
    – GLaDOS
    Mar 29 at 11:28










  • $begingroup$
    But can you prove it for indefinite integral?
    $endgroup$
    – GLaDOS
    Mar 29 at 11:44






  • 1




    $begingroup$
    @GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
    $endgroup$
    – J.G.
    Mar 29 at 12:02
















$begingroup$
I really like this one because it doesn't require the multiplication property of dx.
$endgroup$
– GLaDOS
Mar 29 at 11:28




$begingroup$
I really like this one because it doesn't require the multiplication property of dx.
$endgroup$
– GLaDOS
Mar 29 at 11:28












$begingroup$
But can you prove it for indefinite integral?
$endgroup$
– GLaDOS
Mar 29 at 11:44




$begingroup$
But can you prove it for indefinite integral?
$endgroup$
– GLaDOS
Mar 29 at 11:44




1




1




$begingroup$
@GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
$endgroup$
– J.G.
Mar 29 at 12:02





$begingroup$
@GLaDOS An indefinite integral just means "your favourite antiderivative $+C$", so if substitution works for definite integrals it also does for indefinite ones. For example, $$int_a^b 3x^2sin x^3 dx=int_a^3^b^3sin uduimpliesint 3x^2sin x^3 dx=intsin udu.$$
$endgroup$
– J.G.
Mar 29 at 12:02


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166984%2fwhat-is-the-rigor-behind-u-subsitution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε