Find a point on an ellipse closest to a fixed point inside the ellipseHow to find a point on an ellipse whose normal intersects a point outside the ellipse?Solving lagrange multipliesSolving optimisation problem with langrangian methodUsing Lagrangian multipliers to check the solutionLagrangian multipliers in complex optimizationSolve $max_x_1,x_2,x_3 alpha min a x_1,b x_2,c x_3$ s.t. $p_1 x_1 + p_2 x_2 + p_3 x_3 = w$Does transformation of a function changes oprimal values?How to find Lagrange Multipliers in Quadratic Programming problem?Lagrangian multiplier of a Frobenius norm constraint optimization problemElement-wise Optimization with Lagrange Multiplier Vectorfinding extreme points for Lagrangian with multiple inequality constraints
How can I make my BBEG immortal short of making them a Lich or Vampire?
Java Casting: Java 11 throws LambdaConversionException while 1.8 does not
Malformed Address '10.10.21.08/24', must be X.X.X.X/NN or
Alternative to sending password over mail?
How do I deal with an unproductive colleague in a small company?
Why is Minecraft giving an OpenGL error?
Add text to same line using sed
Replacing matching entries in one column of a file by another column from a different file
NMaximize is not converging to a solution
Revoked SSL certificate
Does detail obscure or enhance action?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
How to format long polynomial?
Why are electrically insulating heatsinks so rare? Is it just cost?
What are these boxed doors outside store fronts in New York?
How much of data wrangling is a data scientist's job?
infared filters v nd
What's that red-plus icon near a text?
Is it possible to run Internet Explorer on OS X El Capitan?
Why can't I see bouncing of a switch on an oscilloscope?
Languages that we cannot (dis)prove to be Context-Free
What is a clear way to write a bar that has an extra beat?
Rock identification in KY
Codimension of non-flat locus
Find a point on an ellipse closest to a fixed point inside the ellipse
How to find a point on an ellipse whose normal intersects a point outside the ellipse?Solving lagrange multipliesSolving optimisation problem with langrangian methodUsing Lagrangian multipliers to check the solutionLagrangian multipliers in complex optimizationSolve $max_x_1,x_2,x_3 alpha min a x_1,b x_2,c x_3$ s.t. $p_1 x_1 + p_2 x_2 + p_3 x_3 = w$Does transformation of a function changes oprimal values?How to find Lagrange Multipliers in Quadratic Programming problem?Lagrangian multiplier of a Frobenius norm constraint optimization problemElement-wise Optimization with Lagrange Multiplier Vectorfinding extreme points for Lagrangian with multiple inequality constraints
$begingroup$
I want to find out $(u,v)$ on the ellipse $$fracu^2a^2+fracv^2b^2=1$$ for a point $(x,y)$ inside ellipse, which will denote shortest distance from $(x,y)$ to the ellipse boundary. I expressed this problem as a constrained optimization problem by this Lagrangian:
beginalign
L(u,v,lambda) &= (u-x)^2+(v-y)^2-lambdaleft(fracu^2a^2 + fracv^2b^2-1right)\[1ex]
fracpartial L(u,v,lambda)partial u&=2u-2x-frac2lambda ua^2\[1ex]
fracpartial L(u,v,lambda)partial v&=2v-2y-frac2lambda vb^2\[1ex]
fracpartial L(u,v,lambda)partial lambda&=fracu^2a^2+fracv^2b^2-1\[1em]
u&=fraca^2xa^2-lambdatag1\[1ex]
v&=fracb^2yb^2-lambdatag2\[1ex]
fracu^2a^2&+fracv^2b^2-1=0tag3\
endalign
After substituting $u$ and $v$ in equation $(3)$, I get
beginaligned
fraca^2x^2(a^2-lambda)^2+fracb^2y^2(b^2-lambda)^2-1=0\
endaligned
I am getting a 4th degree equation of $lambda$. I am facing difficulties in finding algebraic solution of the equation.
optimization lagrange-multiplier
$endgroup$
add a comment |
$begingroup$
I want to find out $(u,v)$ on the ellipse $$fracu^2a^2+fracv^2b^2=1$$ for a point $(x,y)$ inside ellipse, which will denote shortest distance from $(x,y)$ to the ellipse boundary. I expressed this problem as a constrained optimization problem by this Lagrangian:
beginalign
L(u,v,lambda) &= (u-x)^2+(v-y)^2-lambdaleft(fracu^2a^2 + fracv^2b^2-1right)\[1ex]
fracpartial L(u,v,lambda)partial u&=2u-2x-frac2lambda ua^2\[1ex]
fracpartial L(u,v,lambda)partial v&=2v-2y-frac2lambda vb^2\[1ex]
fracpartial L(u,v,lambda)partial lambda&=fracu^2a^2+fracv^2b^2-1\[1em]
u&=fraca^2xa^2-lambdatag1\[1ex]
v&=fracb^2yb^2-lambdatag2\[1ex]
fracu^2a^2&+fracv^2b^2-1=0tag3\
endalign
After substituting $u$ and $v$ in equation $(3)$, I get
beginaligned
fraca^2x^2(a^2-lambda)^2+fracb^2y^2(b^2-lambda)^2-1=0\
endaligned
I am getting a 4th degree equation of $lambda$. I am facing difficulties in finding algebraic solution of the equation.
optimization lagrange-multiplier
$endgroup$
$begingroup$
I am afraid that any one would be facing the same difficulties.
$endgroup$
– Claude Leibovici
Mar 30 at 4:17
$begingroup$
Your problem is equivalent to find a normal passing through a given point. There're two to four normals which concurrent to the given point. See another answer of mine here.
$endgroup$
– Ng Chung Tak
Apr 1 at 10:38
add a comment |
$begingroup$
I want to find out $(u,v)$ on the ellipse $$fracu^2a^2+fracv^2b^2=1$$ for a point $(x,y)$ inside ellipse, which will denote shortest distance from $(x,y)$ to the ellipse boundary. I expressed this problem as a constrained optimization problem by this Lagrangian:
beginalign
L(u,v,lambda) &= (u-x)^2+(v-y)^2-lambdaleft(fracu^2a^2 + fracv^2b^2-1right)\[1ex]
fracpartial L(u,v,lambda)partial u&=2u-2x-frac2lambda ua^2\[1ex]
fracpartial L(u,v,lambda)partial v&=2v-2y-frac2lambda vb^2\[1ex]
fracpartial L(u,v,lambda)partial lambda&=fracu^2a^2+fracv^2b^2-1\[1em]
u&=fraca^2xa^2-lambdatag1\[1ex]
v&=fracb^2yb^2-lambdatag2\[1ex]
fracu^2a^2&+fracv^2b^2-1=0tag3\
endalign
After substituting $u$ and $v$ in equation $(3)$, I get
beginaligned
fraca^2x^2(a^2-lambda)^2+fracb^2y^2(b^2-lambda)^2-1=0\
endaligned
I am getting a 4th degree equation of $lambda$. I am facing difficulties in finding algebraic solution of the equation.
optimization lagrange-multiplier
$endgroup$
I want to find out $(u,v)$ on the ellipse $$fracu^2a^2+fracv^2b^2=1$$ for a point $(x,y)$ inside ellipse, which will denote shortest distance from $(x,y)$ to the ellipse boundary. I expressed this problem as a constrained optimization problem by this Lagrangian:
beginalign
L(u,v,lambda) &= (u-x)^2+(v-y)^2-lambdaleft(fracu^2a^2 + fracv^2b^2-1right)\[1ex]
fracpartial L(u,v,lambda)partial u&=2u-2x-frac2lambda ua^2\[1ex]
fracpartial L(u,v,lambda)partial v&=2v-2y-frac2lambda vb^2\[1ex]
fracpartial L(u,v,lambda)partial lambda&=fracu^2a^2+fracv^2b^2-1\[1em]
u&=fraca^2xa^2-lambdatag1\[1ex]
v&=fracb^2yb^2-lambdatag2\[1ex]
fracu^2a^2&+fracv^2b^2-1=0tag3\
endalign
After substituting $u$ and $v$ in equation $(3)$, I get
beginaligned
fraca^2x^2(a^2-lambda)^2+fracb^2y^2(b^2-lambda)^2-1=0\
endaligned
I am getting a 4th degree equation of $lambda$. I am facing difficulties in finding algebraic solution of the equation.
optimization lagrange-multiplier
optimization lagrange-multiplier
edited Mar 30 at 3:56
David M.
2,198421
2,198421
asked Mar 29 at 11:26
cseju19cseju19
215
215
$begingroup$
I am afraid that any one would be facing the same difficulties.
$endgroup$
– Claude Leibovici
Mar 30 at 4:17
$begingroup$
Your problem is equivalent to find a normal passing through a given point. There're two to four normals which concurrent to the given point. See another answer of mine here.
$endgroup$
– Ng Chung Tak
Apr 1 at 10:38
add a comment |
$begingroup$
I am afraid that any one would be facing the same difficulties.
$endgroup$
– Claude Leibovici
Mar 30 at 4:17
$begingroup$
Your problem is equivalent to find a normal passing through a given point. There're two to four normals which concurrent to the given point. See another answer of mine here.
$endgroup$
– Ng Chung Tak
Apr 1 at 10:38
$begingroup$
I am afraid that any one would be facing the same difficulties.
$endgroup$
– Claude Leibovici
Mar 30 at 4:17
$begingroup$
I am afraid that any one would be facing the same difficulties.
$endgroup$
– Claude Leibovici
Mar 30 at 4:17
$begingroup$
Your problem is equivalent to find a normal passing through a given point. There're two to four normals which concurrent to the given point. See another answer of mine here.
$endgroup$
– Ng Chung Tak
Apr 1 at 10:38
$begingroup$
Your problem is equivalent to find a normal passing through a given point. There're two to four normals which concurrent to the given point. See another answer of mine here.
$endgroup$
– Ng Chung Tak
Apr 1 at 10:38
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167029%2ffind-a-point-on-an-ellipse-closest-to-a-fixed-point-inside-the-ellipse%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167029%2ffind-a-point-on-an-ellipse-closest-to-a-fixed-point-inside-the-ellipse%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I am afraid that any one would be facing the same difficulties.
$endgroup$
– Claude Leibovici
Mar 30 at 4:17
$begingroup$
Your problem is equivalent to find a normal passing through a given point. There're two to four normals which concurrent to the given point. See another answer of mine here.
$endgroup$
– Ng Chung Tak
Apr 1 at 10:38