Skip to main content

Pseudepigraaf Navigaasjemenu

AldheidBibelAlde TestamintNije Testamint


AldheidskriuwerGrykskepseudonymBibeljoadskereligieuzetwadde iuw f.Kr.twadde iuw n.Kr.kanonMozesprofeetSefanjaNije Testamint100300apostelPaulus












Pseudepigraaf




Ut Wikipedy






Jump to navigation
Jump to search


In pseudepigraaf is in geskrift, yn 'e regel út 'e Aldheid, dat op grûn fan bewearings yn 'e tekst sels ûnrjochtlik taskreaun is oan in gesachhawwend skriuwer. De term komt fan it Grykske wurd pseudépigrafos, wat "ûnder in falske namme" of "skreaun ûnder in pseudonym" betsjut. Dizze oantsjutting seit fansels fierders neat oer de wearde fan 'e ynhâld fan it oangeande geskrift.


Oangeande de Bibel ferwiist de term "pseudepigrafen" ornaris nei joadske religieuze teksten út it tiidrek fan 'e twadde iuw f.Kr. oant de twadde iuw n.Kr., dy't net opnommen binne yn 'e bibelske kanon. Foarbylden dêrfan binne bgl. Jubileeën, dat Mozes skreaun hawwe soe, en de Iepenbiering fan Sefanja, dy't fan 'e hân fan 'e profeet Sefanja wêze soe. Der besteane ek pseudepigrafen dy't it Nije Testamint oangeane; dy datearje út 'e perioade fan 100 oant 300 n.Kr. In foarbyld dêrfan is it Tredde Brief oan de Korintiërs, dat troch de apostel Paulus skreaun wêze soe.









Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Pseudepigraaf&oldid=797223"










Navigaasjemenu

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.024","walltime":"0.027","ppvisitednodes":"value":1,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":0,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":1,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 0.000 1 -total"],"cachereport":"origin":"mw1278","timestamp":"20190403062856","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":95,"wgHostname":"mw1271"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε