Lagrange multiplier term in Hamiltonian Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)lagrange multipliers failsLagrange multiplier method, find maximum of $e^-xcdot (x^2-3)cdot (y^2-3)$ on a circleHow to computer the Lagrange multipliers associated with an optimal solutionLagrange multiplier problem - Why doesn't the method work?Lagrange Duality clarification“convergence” of unbounded operators on Fock spaceLagrange multiplier with re-weighting probability distributionsHow does one derive the Fock space based, physicists' construction of the quantized KG field?System of equations for Lagrange multipliersBasis for a tensor product of Fock spaces

Should I use a zero-interest credit card for a large one-time purchase?

Using et al. for a last / senior author rather than for a first author

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

How come Sam didn't become Lord of Horn Hill?

What is the longest distance a player character can jump in one leap?

Can anything be seen from the center of the Boötes void? How dark would it be?

Is there a kind of relay only consumes power when switching?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Do square wave exist?

Dating a Former Employee

また usage in a dictionary

Is there such thing as an Availability Group failover trigger?

Why aren't air breathing engines used as small first stages

How to react to hostile behavior from a senior developer?

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

Can a new player join a group only when a new campaign starts?

What are the out-of-universe reasons for the references to Toby Maguire-era Spider-Man in ITSV

Why are there no cargo aircraft with "flying wing" design?

Do I really need recursive chmod to restrict access to a folder?

Is this homebrew Lady of Pain warlock patron balanced?

What's the meaning of "fortified infraction restraint"?

Fantasy story; one type of magic grows in power with use, but the more powerful they are, they more they are drawn to travel to their source

Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?

Chinese Seal on silk painting - what does it mean?



Lagrange multiplier term in Hamiltonian



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)lagrange multipliers failsLagrange multiplier method, find maximum of $e^-xcdot (x^2-3)cdot (y^2-3)$ on a circleHow to computer the Lagrange multipliers associated with an optimal solutionLagrange multiplier problem - Why doesn't the method work?Lagrange Duality clarification“convergence” of unbounded operators on Fock spaceLagrange multiplier with re-weighting probability distributionsHow does one derive the Fock space based, physicists' construction of the quantized KG field?System of equations for Lagrange multipliersBasis for a tensor product of Fock spaces










2












$begingroup$


My question is about a step in this paper: PhysRevB.65.165113 (X.G. Wen) or arxiv page 6.



Or alternatively: PhysRevB.90.174417 or arxiv page 3.



All papers on spin liquids and the projective symmetry group derive the mean field Hamiltonian in the same way.



Background: The Hilbert space $(mathbb C^2)^otimes d$ of $d$ spin-$1/2$ particles on a lattice is embedded in a larger fermionic Fock space with creation operators $f_iuparrow^dagger, f_idownarrow^dagger$ for each site $i$. The Heisenberg model Hamiltonian
beginalign
H = sum_ij J_ij , vec S_i cdot vec S_j
endalign

is written in terms of the fermionic operators and a mean field decoupling is performed yielding
beginalign
H_MF = sum_ij (Psi_i^dagger U_ij Psi_j + texth.c.) + textconst. , qquad textwhere Psi_i = beginbmatrixf_iuparrow &f_idownarrow^dagger endbmatrix^t
endalign

This is the part that I understand. But then an additional Lagrange multiplier term is added to the Hamiltonian. The Fock space generated by $f_ialpha$ is bigger than $(mathbb C^2)^otimes d$. Only those states are "physical", i.e. correspond to states in $(mathbb C^2)^otimes d$, which satisfy a one-particle per site constraint:
beginalign
langle psi|f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow |psi rangle = 1
endalign

Wen says in his paper that such a constraint can be forced by adding the (site dependent?) Lagrange multiplier term
beginalign
+ sum_i a_3 (f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow -1) + left[(a_1 + i a_2) f_iuparrowf_idownarrow + texth.c.right]
endalign

to the Hamiltonian. $a_mu$ are real numbers. The second paper furthermore tells that $a_mu$ can be obtained by the condition
beginalign
partial E_g/ partial a_mu = 0
endalign

where $E_g$ is the ground state energy of the mean field Hamiltonian.



Remark: All the Fock space, fermion, spin stuff, etc. is probably not needed to answer the question. $f_ialpha$ are just any linear operators on the Hilbert space satisfying canonical anticommutaion relations. The Hilbert space is finite dimensional.



Question:




How can an additional term enforce a constraint on the eigenstates of the Hamiltonian? How do Lagrange multiplier work in second quantized quantum mechanics (mathematically)?




I see that the first term corresponds to the condition that each site is single occupied, and that the other two terms correspond to the conditions that no site is not and that no site is doubly occupied.



They look quite similar as Lagrange multiplier terms in multivariable calculus. I understand how Lagrange multipliers work there. But I don't understand how they work in quantum mechanics. I don't need a complete explanation, just a hint where to start searching. Any help is highly appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    The claim in the second paper about $partial E_g/partial a_mu=0$ actually cites the first paper, which mentions this under equation (26). In general $E_g$ might not be differentiable - I don't know if this matters here.
    $endgroup$
    – Dap
    Apr 6 at 11:16















2












$begingroup$


My question is about a step in this paper: PhysRevB.65.165113 (X.G. Wen) or arxiv page 6.



Or alternatively: PhysRevB.90.174417 or arxiv page 3.



All papers on spin liquids and the projective symmetry group derive the mean field Hamiltonian in the same way.



Background: The Hilbert space $(mathbb C^2)^otimes d$ of $d$ spin-$1/2$ particles on a lattice is embedded in a larger fermionic Fock space with creation operators $f_iuparrow^dagger, f_idownarrow^dagger$ for each site $i$. The Heisenberg model Hamiltonian
beginalign
H = sum_ij J_ij , vec S_i cdot vec S_j
endalign

is written in terms of the fermionic operators and a mean field decoupling is performed yielding
beginalign
H_MF = sum_ij (Psi_i^dagger U_ij Psi_j + texth.c.) + textconst. , qquad textwhere Psi_i = beginbmatrixf_iuparrow &f_idownarrow^dagger endbmatrix^t
endalign

This is the part that I understand. But then an additional Lagrange multiplier term is added to the Hamiltonian. The Fock space generated by $f_ialpha$ is bigger than $(mathbb C^2)^otimes d$. Only those states are "physical", i.e. correspond to states in $(mathbb C^2)^otimes d$, which satisfy a one-particle per site constraint:
beginalign
langle psi|f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow |psi rangle = 1
endalign

Wen says in his paper that such a constraint can be forced by adding the (site dependent?) Lagrange multiplier term
beginalign
+ sum_i a_3 (f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow -1) + left[(a_1 + i a_2) f_iuparrowf_idownarrow + texth.c.right]
endalign

to the Hamiltonian. $a_mu$ are real numbers. The second paper furthermore tells that $a_mu$ can be obtained by the condition
beginalign
partial E_g/ partial a_mu = 0
endalign

where $E_g$ is the ground state energy of the mean field Hamiltonian.



Remark: All the Fock space, fermion, spin stuff, etc. is probably not needed to answer the question. $f_ialpha$ are just any linear operators on the Hilbert space satisfying canonical anticommutaion relations. The Hilbert space is finite dimensional.



Question:




How can an additional term enforce a constraint on the eigenstates of the Hamiltonian? How do Lagrange multiplier work in second quantized quantum mechanics (mathematically)?




I see that the first term corresponds to the condition that each site is single occupied, and that the other two terms correspond to the conditions that no site is not and that no site is doubly occupied.



They look quite similar as Lagrange multiplier terms in multivariable calculus. I understand how Lagrange multipliers work there. But I don't understand how they work in quantum mechanics. I don't need a complete explanation, just a hint where to start searching. Any help is highly appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    The claim in the second paper about $partial E_g/partial a_mu=0$ actually cites the first paper, which mentions this under equation (26). In general $E_g$ might not be differentiable - I don't know if this matters here.
    $endgroup$
    – Dap
    Apr 6 at 11:16













2












2








2


2



$begingroup$


My question is about a step in this paper: PhysRevB.65.165113 (X.G. Wen) or arxiv page 6.



Or alternatively: PhysRevB.90.174417 or arxiv page 3.



All papers on spin liquids and the projective symmetry group derive the mean field Hamiltonian in the same way.



Background: The Hilbert space $(mathbb C^2)^otimes d$ of $d$ spin-$1/2$ particles on a lattice is embedded in a larger fermionic Fock space with creation operators $f_iuparrow^dagger, f_idownarrow^dagger$ for each site $i$. The Heisenberg model Hamiltonian
beginalign
H = sum_ij J_ij , vec S_i cdot vec S_j
endalign

is written in terms of the fermionic operators and a mean field decoupling is performed yielding
beginalign
H_MF = sum_ij (Psi_i^dagger U_ij Psi_j + texth.c.) + textconst. , qquad textwhere Psi_i = beginbmatrixf_iuparrow &f_idownarrow^dagger endbmatrix^t
endalign

This is the part that I understand. But then an additional Lagrange multiplier term is added to the Hamiltonian. The Fock space generated by $f_ialpha$ is bigger than $(mathbb C^2)^otimes d$. Only those states are "physical", i.e. correspond to states in $(mathbb C^2)^otimes d$, which satisfy a one-particle per site constraint:
beginalign
langle psi|f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow |psi rangle = 1
endalign

Wen says in his paper that such a constraint can be forced by adding the (site dependent?) Lagrange multiplier term
beginalign
+ sum_i a_3 (f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow -1) + left[(a_1 + i a_2) f_iuparrowf_idownarrow + texth.c.right]
endalign

to the Hamiltonian. $a_mu$ are real numbers. The second paper furthermore tells that $a_mu$ can be obtained by the condition
beginalign
partial E_g/ partial a_mu = 0
endalign

where $E_g$ is the ground state energy of the mean field Hamiltonian.



Remark: All the Fock space, fermion, spin stuff, etc. is probably not needed to answer the question. $f_ialpha$ are just any linear operators on the Hilbert space satisfying canonical anticommutaion relations. The Hilbert space is finite dimensional.



Question:




How can an additional term enforce a constraint on the eigenstates of the Hamiltonian? How do Lagrange multiplier work in second quantized quantum mechanics (mathematically)?




I see that the first term corresponds to the condition that each site is single occupied, and that the other two terms correspond to the conditions that no site is not and that no site is doubly occupied.



They look quite similar as Lagrange multiplier terms in multivariable calculus. I understand how Lagrange multipliers work there. But I don't understand how they work in quantum mechanics. I don't need a complete explanation, just a hint where to start searching. Any help is highly appreciated.










share|cite|improve this question











$endgroup$




My question is about a step in this paper: PhysRevB.65.165113 (X.G. Wen) or arxiv page 6.



Or alternatively: PhysRevB.90.174417 or arxiv page 3.



All papers on spin liquids and the projective symmetry group derive the mean field Hamiltonian in the same way.



Background: The Hilbert space $(mathbb C^2)^otimes d$ of $d$ spin-$1/2$ particles on a lattice is embedded in a larger fermionic Fock space with creation operators $f_iuparrow^dagger, f_idownarrow^dagger$ for each site $i$. The Heisenberg model Hamiltonian
beginalign
H = sum_ij J_ij , vec S_i cdot vec S_j
endalign

is written in terms of the fermionic operators and a mean field decoupling is performed yielding
beginalign
H_MF = sum_ij (Psi_i^dagger U_ij Psi_j + texth.c.) + textconst. , qquad textwhere Psi_i = beginbmatrixf_iuparrow &f_idownarrow^dagger endbmatrix^t
endalign

This is the part that I understand. But then an additional Lagrange multiplier term is added to the Hamiltonian. The Fock space generated by $f_ialpha$ is bigger than $(mathbb C^2)^otimes d$. Only those states are "physical", i.e. correspond to states in $(mathbb C^2)^otimes d$, which satisfy a one-particle per site constraint:
beginalign
langle psi|f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow |psi rangle = 1
endalign

Wen says in his paper that such a constraint can be forced by adding the (site dependent?) Lagrange multiplier term
beginalign
+ sum_i a_3 (f_iuparrow^dagger f_iuparrow + f_idownarrow^dagger f_idownarrow -1) + left[(a_1 + i a_2) f_iuparrowf_idownarrow + texth.c.right]
endalign

to the Hamiltonian. $a_mu$ are real numbers. The second paper furthermore tells that $a_mu$ can be obtained by the condition
beginalign
partial E_g/ partial a_mu = 0
endalign

where $E_g$ is the ground state energy of the mean field Hamiltonian.



Remark: All the Fock space, fermion, spin stuff, etc. is probably not needed to answer the question. $f_ialpha$ are just any linear operators on the Hilbert space satisfying canonical anticommutaion relations. The Hilbert space is finite dimensional.



Question:




How can an additional term enforce a constraint on the eigenstates of the Hamiltonian? How do Lagrange multiplier work in second quantized quantum mechanics (mathematically)?




I see that the first term corresponds to the condition that each site is single occupied, and that the other two terms correspond to the conditions that no site is not and that no site is doubly occupied.



They look quite similar as Lagrange multiplier terms in multivariable calculus. I understand how Lagrange multipliers work there. But I don't understand how they work in quantum mechanics. I don't need a complete explanation, just a hint where to start searching. Any help is highly appreciated.







functional-analysis physics mathematical-physics lagrange-multiplier self-adjoint-operators






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 6 at 4:01









Andrews

1,3012423




1,3012423










asked Apr 1 at 13:59









N.BeckN.Beck

1938




1938











  • $begingroup$
    The claim in the second paper about $partial E_g/partial a_mu=0$ actually cites the first paper, which mentions this under equation (26). In general $E_g$ might not be differentiable - I don't know if this matters here.
    $endgroup$
    – Dap
    Apr 6 at 11:16
















  • $begingroup$
    The claim in the second paper about $partial E_g/partial a_mu=0$ actually cites the first paper, which mentions this under equation (26). In general $E_g$ might not be differentiable - I don't know if this matters here.
    $endgroup$
    – Dap
    Apr 6 at 11:16















$begingroup$
The claim in the second paper about $partial E_g/partial a_mu=0$ actually cites the first paper, which mentions this under equation (26). In general $E_g$ might not be differentiable - I don't know if this matters here.
$endgroup$
– Dap
Apr 6 at 11:16




$begingroup$
The claim in the second paper about $partial E_g/partial a_mu=0$ actually cites the first paper, which mentions this under equation (26). In general $E_g$ might not be differentiable - I don't know if this matters here.
$endgroup$
– Dap
Apr 6 at 11:16










1 Answer
1






active

oldest

votes


















1












$begingroup$

The ground state energy is a classical minimization problem, over the unit sphere.
Consider the general problem $H=H_a=V+aC$ with $H,C$ self-adjoint operators on a finite dimensional Hilbert space. The problem is:



  • minimize $E_g=langlepsi| H| psirangle=langlepsi| V| psirangle+alanglepsi| C| psirangle$

  • such that $langlepsi|psirangle=1$

A ground state $|psirangle$ for $H_a+epsilon$ is close to a ground state for $H_a.$ This leads to an approximation like $langle psi | H_a+epsilon |psirangle = E_g + epsilon langle psi |C|psirangle + O(epsilon^2).$ So $partial E_g/partial a=langle psi| C|psirangle.$






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170642%2flagrange-multiplier-term-in-hamiltonian%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The ground state energy is a classical minimization problem, over the unit sphere.
    Consider the general problem $H=H_a=V+aC$ with $H,C$ self-adjoint operators on a finite dimensional Hilbert space. The problem is:



    • minimize $E_g=langlepsi| H| psirangle=langlepsi| V| psirangle+alanglepsi| C| psirangle$

    • such that $langlepsi|psirangle=1$

    A ground state $|psirangle$ for $H_a+epsilon$ is close to a ground state for $H_a.$ This leads to an approximation like $langle psi | H_a+epsilon |psirangle = E_g + epsilon langle psi |C|psirangle + O(epsilon^2).$ So $partial E_g/partial a=langle psi| C|psirangle.$






    share|cite|improve this answer











    $endgroup$

















      1












      $begingroup$

      The ground state energy is a classical minimization problem, over the unit sphere.
      Consider the general problem $H=H_a=V+aC$ with $H,C$ self-adjoint operators on a finite dimensional Hilbert space. The problem is:



      • minimize $E_g=langlepsi| H| psirangle=langlepsi| V| psirangle+alanglepsi| C| psirangle$

      • such that $langlepsi|psirangle=1$

      A ground state $|psirangle$ for $H_a+epsilon$ is close to a ground state for $H_a.$ This leads to an approximation like $langle psi | H_a+epsilon |psirangle = E_g + epsilon langle psi |C|psirangle + O(epsilon^2).$ So $partial E_g/partial a=langle psi| C|psirangle.$






      share|cite|improve this answer











      $endgroup$















        1












        1








        1





        $begingroup$

        The ground state energy is a classical minimization problem, over the unit sphere.
        Consider the general problem $H=H_a=V+aC$ with $H,C$ self-adjoint operators on a finite dimensional Hilbert space. The problem is:



        • minimize $E_g=langlepsi| H| psirangle=langlepsi| V| psirangle+alanglepsi| C| psirangle$

        • such that $langlepsi|psirangle=1$

        A ground state $|psirangle$ for $H_a+epsilon$ is close to a ground state for $H_a.$ This leads to an approximation like $langle psi | H_a+epsilon |psirangle = E_g + epsilon langle psi |C|psirangle + O(epsilon^2).$ So $partial E_g/partial a=langle psi| C|psirangle.$






        share|cite|improve this answer











        $endgroup$



        The ground state energy is a classical minimization problem, over the unit sphere.
        Consider the general problem $H=H_a=V+aC$ with $H,C$ self-adjoint operators on a finite dimensional Hilbert space. The problem is:



        • minimize $E_g=langlepsi| H| psirangle=langlepsi| V| psirangle+alanglepsi| C| psirangle$

        • such that $langlepsi|psirangle=1$

        A ground state $|psirangle$ for $H_a+epsilon$ is close to a ground state for $H_a.$ This leads to an approximation like $langle psi | H_a+epsilon |psirangle = E_g + epsilon langle psi |C|psirangle + O(epsilon^2).$ So $partial E_g/partial a=langle psi| C|psirangle.$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 6 at 8:21

























        answered Apr 6 at 6:13









        DapDap

        20.1k842




        20.1k842



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170642%2flagrange-multiplier-term-in-hamiltonian%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

            Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε