Skip to main content

Dykhurdfytsen op de Olympyske Simmerspullen 1928 Ynhâld ôfstannen | Utslaggen | Sjoch ek | Navigaasjemenu52° 22′ 0″ N, 4° 54′ 0″ E

Dykhurdfytse op de Olympyske Simmerspullen


Olympyske SpullenAmsterdamNederlândykhurdfytsen












Dykhurdfytsen op de Olympyske Simmerspullen 1928




Ut Wikipedy






Jump to navigation
Jump to search


De Olympyske Simmerspullen 1928, offisjeel de Spullen fan de IXe Olympiade, wie de achtste Spullen yn de rige fan de moderne Olympyske Spullen. De Spullen waarden organisearre yn Amsterdam, Nederlân. It dykhurdfytsen waard hâlden yn it sintrum fan Amsterdam.




Ynhâld





  • 1 ôfstannen

    • 1.1 Manlju



  • 2 Utslaggen

    • 2.1 Tiidrit, yndividueel


    • 2.2 Tiidrit, lannen



  • 3 Sjoch ek




ôfstannen |



Manlju |


  • Tiidrit, yndividueel - 168 km

  • Tiidrit, lannen - 3 x 168 km


Utslaggen |



Tiidrit, yndividueel |




















Manlju
#
Fytser
Lân
Tiid
GoudHenry Hansen
Flagge fan Denemark DEN
4:47:18
SulverFrank Southall
Flagge fan Grut-Brittanje GBR
4:55:06
BrûnsGösta Carlsson
Flagge fan Sweden SWE
5:00:17


Tiidrit, lannen |




















Manlju
#
Fytsers
Lân
Tiid
Goud
Henry Hansen
Leo Nielsen
Orla Jørgensen

Flagge fan Denemark DEN
15:09:14
Sulver
Frank Southall
Jack Lauterwasser
John Middleton

Flagge fan Grut-Brittanje GBR
15:14:49
Brûns
Gösta Carlsson
Erik Jansson
Georg Johnsson

Flagge fan Sweden SWE
15:27:49


Sjoch ek |


  • Baanhurdfytse op de Olympyske Simmerspullen 1928









Cycling (road) pictogram.svg


Dykhurdfytsen op de Olympyske Simmerspullen

Atene 1896 | Stokholm 1912 | Antwerpen 1920 | Parys 1924 | Amsterdam 1928 | Los Angeles 1932 | Berlyn 1936 | Londen 1948 | Helsinky 1952 | Melbourne 1956 | Rome 1960 | Tokyo 1964 | Meksiko 1968 | München 1972 | Montreal 1976 | Moskou 1980 | Los Angeles 1984 | Seoul 1988 | Barselona 1992 | Atlanta 1996 | Sydney 2000 | Atene 2004 | Peking 2008 | Londen 2012 | Rio de Janêro 2016 |

wizigje











Olympyske Ringen.jpg


Olympyske Simmerspullen 1928

Flag of the Netherlands.svg


Atletyk | Baanhurdfytse | Bokse | Dykhurdfytse | Fuotbal | Gewichtheffe | Gymnastyk | Hynstesport | Hokky | Hurdsile | Keunstdûke | Moderne Fiifkamp | Roeie | Skermje | Swimme | Wetterpolo | Wrakselje |

wizigje
Internet-web-browser.svg 52° 22′ 0″ N, 4° 54′ 0″ E




Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Dykhurdfytsen_op_de_Olympyske_Simmerspullen_1928&oldid=671714"










Navigaasjemenu

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.048","walltime":"0.079","ppvisitednodes":"value":98,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":5059,"limit":2097152,"templateargumentsize":"value":84,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 28.853 1 -total"," 17.01% 4.909 1 Berjocht:Koördinaten"," 16.99% 4.901 1 Berjocht:Dykhurdfytse_op_de_Olympyske_Simmerspullen"," 12.48% 3.600 2 Berjocht:Sulver"," 9.68% 2.792 2 Berjocht:Goud"," 9.37% 2.704 2 Berjocht:SWE"," 9.14% 2.637 1 Berjocht:Olympyske_Simmerspullen_1928"," 8.55% 2.467 1 Berjocht:MapsServer"," 7.43% 2.145 2 Berjocht:DEN"," 7.24% 2.090 2 Berjocht:GBR"],"cachereport":"origin":"mw1250","timestamp":"20190409181856","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":126,"wgHostname":"mw1274"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε