Skip to main content

Dykhurdfytsen op de Olympyske Simmerspullen 1896 Ynhâld ôfstannen | Utslaggen | Sjoch ek | Navigaasjemenu38° 10′ 21″ N, 23° 57′ 27″ E

Multi tool use
Multi tool use

Dykhurdfytse op de Olympyske Simmerspullen


Olympyske SpullenAteneGrikelândykhurdfytsen












Dykhurdfytsen op de Olympyske Simmerspullen 1896




Ut Wikipedy






Jump to navigation
Jump to search


Internet-web-browser.svg 38° 10′ 21″ N, 23° 57′ 27″ E



De Olympyske Simmerspullen 1896, offisjeel de Spullen fan de I Olympiade, wiene de earste moderne Olympyske Spullen en waarden yn Atene, Grikelân hâlden. It dykhurdfytsen hie plak yn Marathon in stêd op it skiereilân Attika.




Ynhâld





  • 1 ôfstannen

    • 1.1 Manlju



  • 2 Utslaggen

    • 2.1 Dykwedstriid, yndividueel



  • 3 Sjoch ek




ôfstannen |



Manlju |


  • Dykwedstriid, yndividueel - 87 km


Utslaggen |



Dykwedstriid, yndividueel |




















Manlju
#
Fytser
Lân
Tiid
GoudAristidis Konstantinidis
Flagge fan Grikelân GRE
3:22:31
SulverAugust von Gödrich
Flagge fan Dútslân GER
3:42:18
BrûnsEdward Battel
Flagge fan Grut-Brittanje GBR


Sjoch ek |


  • Baanhurdfytse op de Olympyske Simmerspullen 1896









Cycling (road) pictogram.svg


Dykhurdfytsen op de Olympyske Simmerspullen

Atene 1896 | Stokholm 1912 | Antwerpen 1920 | Parys 1924 | Amsterdam 1928 | Los Angeles 1932 | Berlyn 1936 | Londen 1948 | Helsinky 1952 | Melbourne 1956 | Rome 1960 | Tokyo 1964 | Meksiko 1968 | München 1972 | Montreal 1976 | Moskou 1980 | Los Angeles 1984 | Seoul 1988 | Barselona 1992 | Atlanta 1996 | Sydney 2000 | Atene 2004 | Peking 2008 | Londen 2012 | Rio de Janêro 2016 |

wizigje








Olympyske Ringen.jpg


Olympyske Simmerspullen 1896

Flag of Greece.svg


Atletyk | Gewichtheffe | Skermje | Dykhurdfytse | Sjitsport | Tennis | Gymnastyk | Baanhurdfytse | Wrakselje | Swimme |

wizigje



Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Dykhurdfytsen_op_de_Olympyske_Simmerspullen_1896&oldid=630543"










Navigaasjemenu

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.056","walltime":"0.085","ppvisitednodes":"value":69,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":4259,"limit":2097152,"templateargumentsize":"value":89,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 29.816 1 -total"," 22.58% 6.734 1 Berjocht:Koördinaten"," 16.35% 4.875 1 Berjocht:Dykhurdfytse_op_de_Olympyske_Simmerspullen"," 11.44% 3.411 1 Berjocht:Olympyske_Simmerspullen_1896"," 9.86% 2.939 1 Berjocht:Sulver"," 9.53% 2.843 1 Berjocht:MapsServer"," 8.83% 2.632 1 Berjocht:GRE"," 8.81% 2.627 1 Berjocht:Goud"," 6.90% 2.058 1 Berjocht:GER1918"," 6.69% 1.996 1 Berjocht:Brûns"],"cachereport":"origin":"mw1314","timestamp":"20190403061447","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":100,"wgHostname":"mw1248"););2DlpjuB,OCZn an562Dar3s,c3GKq 7d5lgeYx40447gMwXOGZdWbf,6vK83MLHio6ydhT,2mVAx,gN foMV tCxPuXbldanCeE
kHNKmw0AN,pTX6ily RFAwHeNGM,Hl,3B M9m49gl5cZ2LttjycFVV

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?