Expectation of the max operator Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Expectation of max of independent (unknown distribution) random variables.Marginal Distribution of Uniform Vector on SphereDiscrete probability distribution where (max - min) $not=$ averageExpectation of Gaussian random varible composed with max functionProbability of a gaussian lying in half-spaces?Complex Gaussian random vector, vec operator and expectationWhat is the pdf of $N(0,sigma^2)+maxN(0,sigma^2),…,N(0,sigma^2)$?What is the asymptotic distribution of the right singular vectors of a matrix with multivariate gaussian sampled rows?Expectation of linear transformation with noiseAbout a class of expectation calculation

How does the math work when buying airline miles?

How would a mousetrap for use in space work?

If my PI received research grants from a company to be able to pay my postdoc salary, did I have a potential conflict interest too?

Significance of Cersei's obsession with elephants?

Trademark violation for app?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Did MS DOS itself ever use blinking text?

Why aren't air breathing engines used as small first stages

Fundamental Solution of the Pell Equation

An adverb for when you're not exaggerating

What is the longest distance a player character can jump in one leap?

Can an alien society believe that their star system is the universe?

Is it common practice to audition new musicians one-on-one before rehearsing with the entire band?

Fantasy story; one type of magic grows in power with use, but the more powerful they are, they more they are drawn to travel to their source

Why are the trig functions versine, haversine, exsecant, etc, rarely used in modern mathematics?

Is "Reachable Object" really an NP-complete problem?

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

Should I use a zero-interest credit card for a large one-time purchase?

What does "lightly crushed" mean for cardamon pods?

How do I find out the mythology and history of my Fortress?

Is the Standard Deduction better than Itemized when both are the same amount?

Can anything be seen from the center of the Boötes void? How dark would it be?

How to Make a Beautiful Stacked 3D Plot

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?



Expectation of the max operator



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Expectation of max of independent (unknown distribution) random variables.Marginal Distribution of Uniform Vector on SphereDiscrete probability distribution where (max - min) $not=$ averageExpectation of Gaussian random varible composed with max functionProbability of a gaussian lying in half-spaces?Complex Gaussian random vector, vec operator and expectationWhat is the pdf of $N(0,sigma^2)+maxN(0,sigma^2),…,N(0,sigma^2)$?What is the asymptotic distribution of the right singular vectors of a matrix with multivariate gaussian sampled rows?Expectation of linear transformation with noiseAbout a class of expectation calculation










0












$begingroup$


For some $n-$dimensional distribution $cal D$ and a vector $a in mathbbR^n$ can we exactly compute,



$$mathbbE_x sim cal D [ max 0, a^top x ] $$



?



  • At least for the Gaussian distribution on $mathbbR^n$ is this known?

  • At least for say the uniform distribution on $S^n-1$?









share|cite|improve this question









$endgroup$











  • $begingroup$
    It should be easy for any isotropic distribution, since without loss of generality you can assume $mathbfa = ahatmathbfx_n$
    $endgroup$
    – eyeballfrog
    Apr 1 at 14:40











  • $begingroup$
    Yes. And then what would the value of the integral be?
    $endgroup$
    – gradstudent
    Apr 1 at 14:44















0












$begingroup$


For some $n-$dimensional distribution $cal D$ and a vector $a in mathbbR^n$ can we exactly compute,



$$mathbbE_x sim cal D [ max 0, a^top x ] $$



?



  • At least for the Gaussian distribution on $mathbbR^n$ is this known?

  • At least for say the uniform distribution on $S^n-1$?









share|cite|improve this question









$endgroup$











  • $begingroup$
    It should be easy for any isotropic distribution, since without loss of generality you can assume $mathbfa = ahatmathbfx_n$
    $endgroup$
    – eyeballfrog
    Apr 1 at 14:40











  • $begingroup$
    Yes. And then what would the value of the integral be?
    $endgroup$
    – gradstudent
    Apr 1 at 14:44













0












0








0





$begingroup$


For some $n-$dimensional distribution $cal D$ and a vector $a in mathbbR^n$ can we exactly compute,



$$mathbbE_x sim cal D [ max 0, a^top x ] $$



?



  • At least for the Gaussian distribution on $mathbbR^n$ is this known?

  • At least for say the uniform distribution on $S^n-1$?









share|cite|improve this question









$endgroup$




For some $n-$dimensional distribution $cal D$ and a vector $a in mathbbR^n$ can we exactly compute,



$$mathbbE_x sim cal D [ max 0, a^top x ] $$



?



  • At least for the Gaussian distribution on $mathbbR^n$ is this known?

  • At least for say the uniform distribution on $S^n-1$?






probability probability-distributions expected-value






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 1 at 14:34









gradstudentgradstudent

19217




19217











  • $begingroup$
    It should be easy for any isotropic distribution, since without loss of generality you can assume $mathbfa = ahatmathbfx_n$
    $endgroup$
    – eyeballfrog
    Apr 1 at 14:40











  • $begingroup$
    Yes. And then what would the value of the integral be?
    $endgroup$
    – gradstudent
    Apr 1 at 14:44
















  • $begingroup$
    It should be easy for any isotropic distribution, since without loss of generality you can assume $mathbfa = ahatmathbfx_n$
    $endgroup$
    – eyeballfrog
    Apr 1 at 14:40











  • $begingroup$
    Yes. And then what would the value of the integral be?
    $endgroup$
    – gradstudent
    Apr 1 at 14:44















$begingroup$
It should be easy for any isotropic distribution, since without loss of generality you can assume $mathbfa = ahatmathbfx_n$
$endgroup$
– eyeballfrog
Apr 1 at 14:40





$begingroup$
It should be easy for any isotropic distribution, since without loss of generality you can assume $mathbfa = ahatmathbfx_n$
$endgroup$
– eyeballfrog
Apr 1 at 14:40













$begingroup$
Yes. And then what would the value of the integral be?
$endgroup$
– gradstudent
Apr 1 at 14:44




$begingroup$
Yes. And then what would the value of the integral be?
$endgroup$
– gradstudent
Apr 1 at 14:44










2 Answers
2






active

oldest

votes


















0












$begingroup$

If the distribution $f$ is isotropic (that is, $f = f(r)$), this can be calculated exactly whenever $E(|mathbfx|)$ can using $n$-dimensional spherical coordinates. Let $r$ represent the radial coordinate, $theta$ represent the polar angle, and $Omega$ represent the remaining spherical angles, which form the surface of a unit sphere in $n-1$ dimensions. Without loss of generality, assume $mathbfa$ is parallel to the polar axis. Then $mathbfacdot mathbfx = arcostheta$ and
beginmultline
E(maxmathbfacdotmathbfx,0) = int (mathbfacdotmathbfx)f d^nmathbfx \= int_0^inftyint_0^pileft[int_0^2piright]^n-2maxarcostheta,0 f(r)r^n-1sin^n-2theta ,d^n-2Omega ,dtheta, dr.
endmultline

where $r^n-1sin^n-2theta, d^n-2Omega,dtheta,dr$ is the n-dimensional spherical volume element. Since the factors all depend on one variable, we can separate this integral. Since $costheta < 0$ for $theta > pi/2$, we have
beginmultline
...= aint_0^infty rf(r)r^n-1drint_0^pi/2costhetasin^n-2theta dthetaleft[int_0^2piright]^n-2d^n-2Omega \= frac2api^(n-1)/2(n-1)Gamma((n-1)/2)int_0^infty r^n f(r)dr = fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr
endmultline

where we have used $int_0^pi/2sin^n-2thetacostheta,dtheta = 1/(n-1)$ and the fact that a sphere in $n$ dimensions has surface area $2pi^n/2/Gamma(n/2)$.



Lastly, from
$$
E(|mathbfx|) = int |mathbfx|f d^n mathbfx = 2fracpi^n/2Gamma(n/2)int_0^infty r^nf(r)dr
$$

(again using the $n$-dimensional surface area formula), we have
$$
E(maxmathbfacdotmathbfx,0) =fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr = fraca2sqrtpifracGamma(n/2)Gamma((n+1)/2)E(|mathbfx|)
$$

which is the general form for an isotropic distribution $f$.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    $ mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ] $ can also be calculated exactly whenever $ cal D=mathcalN_n(mu,,Sigma) $ is multivariate normal. In this case $ a^tophspace-0.2emx simmathcalN_1(a^tophspace-0.2emmu,,a^topSigma a) $, so putting $ alpha=a^tophspace-0.2emmu $ and $ sigma=sqrta^topSigma a $, we get
    begineqnarray mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ]&=&frac1sqrt2pisigmaint_-infty^inftymax 0, ye^-fracleft(y-alpharight)^22sigma^2dy\
    &=& frac1sqrt2pisigmaint_0^infty ye^-fracleft(y-alpharight)^22sigma^2dy\
    &=& frac1sqrt2piint_-fracalphasigma^inftyleft(alpha+sigma zright)e^-fracz^22dz\
    &=& alphaleft(1-mathcalN_1(0,,1)left(-fracalphasigmaright)right)+fracsigmasqrt2pi e^-fracalpha^22sigma^2
    endeqnarray






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170692%2fexpectation-of-the-max-operator%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      If the distribution $f$ is isotropic (that is, $f = f(r)$), this can be calculated exactly whenever $E(|mathbfx|)$ can using $n$-dimensional spherical coordinates. Let $r$ represent the radial coordinate, $theta$ represent the polar angle, and $Omega$ represent the remaining spherical angles, which form the surface of a unit sphere in $n-1$ dimensions. Without loss of generality, assume $mathbfa$ is parallel to the polar axis. Then $mathbfacdot mathbfx = arcostheta$ and
      beginmultline
      E(maxmathbfacdotmathbfx,0) = int (mathbfacdotmathbfx)f d^nmathbfx \= int_0^inftyint_0^pileft[int_0^2piright]^n-2maxarcostheta,0 f(r)r^n-1sin^n-2theta ,d^n-2Omega ,dtheta, dr.
      endmultline

      where $r^n-1sin^n-2theta, d^n-2Omega,dtheta,dr$ is the n-dimensional spherical volume element. Since the factors all depend on one variable, we can separate this integral. Since $costheta < 0$ for $theta > pi/2$, we have
      beginmultline
      ...= aint_0^infty rf(r)r^n-1drint_0^pi/2costhetasin^n-2theta dthetaleft[int_0^2piright]^n-2d^n-2Omega \= frac2api^(n-1)/2(n-1)Gamma((n-1)/2)int_0^infty r^n f(r)dr = fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr
      endmultline

      where we have used $int_0^pi/2sin^n-2thetacostheta,dtheta = 1/(n-1)$ and the fact that a sphere in $n$ dimensions has surface area $2pi^n/2/Gamma(n/2)$.



      Lastly, from
      $$
      E(|mathbfx|) = int |mathbfx|f d^n mathbfx = 2fracpi^n/2Gamma(n/2)int_0^infty r^nf(r)dr
      $$

      (again using the $n$-dimensional surface area formula), we have
      $$
      E(maxmathbfacdotmathbfx,0) =fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr = fraca2sqrtpifracGamma(n/2)Gamma((n+1)/2)E(|mathbfx|)
      $$

      which is the general form for an isotropic distribution $f$.






      share|cite|improve this answer











      $endgroup$

















        0












        $begingroup$

        If the distribution $f$ is isotropic (that is, $f = f(r)$), this can be calculated exactly whenever $E(|mathbfx|)$ can using $n$-dimensional spherical coordinates. Let $r$ represent the radial coordinate, $theta$ represent the polar angle, and $Omega$ represent the remaining spherical angles, which form the surface of a unit sphere in $n-1$ dimensions. Without loss of generality, assume $mathbfa$ is parallel to the polar axis. Then $mathbfacdot mathbfx = arcostheta$ and
        beginmultline
        E(maxmathbfacdotmathbfx,0) = int (mathbfacdotmathbfx)f d^nmathbfx \= int_0^inftyint_0^pileft[int_0^2piright]^n-2maxarcostheta,0 f(r)r^n-1sin^n-2theta ,d^n-2Omega ,dtheta, dr.
        endmultline

        where $r^n-1sin^n-2theta, d^n-2Omega,dtheta,dr$ is the n-dimensional spherical volume element. Since the factors all depend on one variable, we can separate this integral. Since $costheta < 0$ for $theta > pi/2$, we have
        beginmultline
        ...= aint_0^infty rf(r)r^n-1drint_0^pi/2costhetasin^n-2theta dthetaleft[int_0^2piright]^n-2d^n-2Omega \= frac2api^(n-1)/2(n-1)Gamma((n-1)/2)int_0^infty r^n f(r)dr = fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr
        endmultline

        where we have used $int_0^pi/2sin^n-2thetacostheta,dtheta = 1/(n-1)$ and the fact that a sphere in $n$ dimensions has surface area $2pi^n/2/Gamma(n/2)$.



        Lastly, from
        $$
        E(|mathbfx|) = int |mathbfx|f d^n mathbfx = 2fracpi^n/2Gamma(n/2)int_0^infty r^nf(r)dr
        $$

        (again using the $n$-dimensional surface area formula), we have
        $$
        E(maxmathbfacdotmathbfx,0) =fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr = fraca2sqrtpifracGamma(n/2)Gamma((n+1)/2)E(|mathbfx|)
        $$

        which is the general form for an isotropic distribution $f$.






        share|cite|improve this answer











        $endgroup$















          0












          0








          0





          $begingroup$

          If the distribution $f$ is isotropic (that is, $f = f(r)$), this can be calculated exactly whenever $E(|mathbfx|)$ can using $n$-dimensional spherical coordinates. Let $r$ represent the radial coordinate, $theta$ represent the polar angle, and $Omega$ represent the remaining spherical angles, which form the surface of a unit sphere in $n-1$ dimensions. Without loss of generality, assume $mathbfa$ is parallel to the polar axis. Then $mathbfacdot mathbfx = arcostheta$ and
          beginmultline
          E(maxmathbfacdotmathbfx,0) = int (mathbfacdotmathbfx)f d^nmathbfx \= int_0^inftyint_0^pileft[int_0^2piright]^n-2maxarcostheta,0 f(r)r^n-1sin^n-2theta ,d^n-2Omega ,dtheta, dr.
          endmultline

          where $r^n-1sin^n-2theta, d^n-2Omega,dtheta,dr$ is the n-dimensional spherical volume element. Since the factors all depend on one variable, we can separate this integral. Since $costheta < 0$ for $theta > pi/2$, we have
          beginmultline
          ...= aint_0^infty rf(r)r^n-1drint_0^pi/2costhetasin^n-2theta dthetaleft[int_0^2piright]^n-2d^n-2Omega \= frac2api^(n-1)/2(n-1)Gamma((n-1)/2)int_0^infty r^n f(r)dr = fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr
          endmultline

          where we have used $int_0^pi/2sin^n-2thetacostheta,dtheta = 1/(n-1)$ and the fact that a sphere in $n$ dimensions has surface area $2pi^n/2/Gamma(n/2)$.



          Lastly, from
          $$
          E(|mathbfx|) = int |mathbfx|f d^n mathbfx = 2fracpi^n/2Gamma(n/2)int_0^infty r^nf(r)dr
          $$

          (again using the $n$-dimensional surface area formula), we have
          $$
          E(maxmathbfacdotmathbfx,0) =fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr = fraca2sqrtpifracGamma(n/2)Gamma((n+1)/2)E(|mathbfx|)
          $$

          which is the general form for an isotropic distribution $f$.






          share|cite|improve this answer











          $endgroup$



          If the distribution $f$ is isotropic (that is, $f = f(r)$), this can be calculated exactly whenever $E(|mathbfx|)$ can using $n$-dimensional spherical coordinates. Let $r$ represent the radial coordinate, $theta$ represent the polar angle, and $Omega$ represent the remaining spherical angles, which form the surface of a unit sphere in $n-1$ dimensions. Without loss of generality, assume $mathbfa$ is parallel to the polar axis. Then $mathbfacdot mathbfx = arcostheta$ and
          beginmultline
          E(maxmathbfacdotmathbfx,0) = int (mathbfacdotmathbfx)f d^nmathbfx \= int_0^inftyint_0^pileft[int_0^2piright]^n-2maxarcostheta,0 f(r)r^n-1sin^n-2theta ,d^n-2Omega ,dtheta, dr.
          endmultline

          where $r^n-1sin^n-2theta, d^n-2Omega,dtheta,dr$ is the n-dimensional spherical volume element. Since the factors all depend on one variable, we can separate this integral. Since $costheta < 0$ for $theta > pi/2$, we have
          beginmultline
          ...= aint_0^infty rf(r)r^n-1drint_0^pi/2costhetasin^n-2theta dthetaleft[int_0^2piright]^n-2d^n-2Omega \= frac2api^(n-1)/2(n-1)Gamma((n-1)/2)int_0^infty r^n f(r)dr = fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr
          endmultline

          where we have used $int_0^pi/2sin^n-2thetacostheta,dtheta = 1/(n-1)$ and the fact that a sphere in $n$ dimensions has surface area $2pi^n/2/Gamma(n/2)$.



          Lastly, from
          $$
          E(|mathbfx|) = int |mathbfx|f d^n mathbfx = 2fracpi^n/2Gamma(n/2)int_0^infty r^nf(r)dr
          $$

          (again using the $n$-dimensional surface area formula), we have
          $$
          E(maxmathbfacdotmathbfx,0) =fracapi^(n-1)/2Gamma((n+1)/2)int_0^infty r^nf(r)dr = fraca2sqrtpifracGamma(n/2)Gamma((n+1)/2)E(|mathbfx|)
          $$

          which is the general form for an isotropic distribution $f$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 1 at 16:16

























          answered Apr 1 at 16:10









          eyeballfrogeyeballfrog

          7,232633




          7,232633





















              0












              $begingroup$

              $ mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ] $ can also be calculated exactly whenever $ cal D=mathcalN_n(mu,,Sigma) $ is multivariate normal. In this case $ a^tophspace-0.2emx simmathcalN_1(a^tophspace-0.2emmu,,a^topSigma a) $, so putting $ alpha=a^tophspace-0.2emmu $ and $ sigma=sqrta^topSigma a $, we get
              begineqnarray mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ]&=&frac1sqrt2pisigmaint_-infty^inftymax 0, ye^-fracleft(y-alpharight)^22sigma^2dy\
              &=& frac1sqrt2pisigmaint_0^infty ye^-fracleft(y-alpharight)^22sigma^2dy\
              &=& frac1sqrt2piint_-fracalphasigma^inftyleft(alpha+sigma zright)e^-fracz^22dz\
              &=& alphaleft(1-mathcalN_1(0,,1)left(-fracalphasigmaright)right)+fracsigmasqrt2pi e^-fracalpha^22sigma^2
              endeqnarray






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                $ mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ] $ can also be calculated exactly whenever $ cal D=mathcalN_n(mu,,Sigma) $ is multivariate normal. In this case $ a^tophspace-0.2emx simmathcalN_1(a^tophspace-0.2emmu,,a^topSigma a) $, so putting $ alpha=a^tophspace-0.2emmu $ and $ sigma=sqrta^topSigma a $, we get
                begineqnarray mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ]&=&frac1sqrt2pisigmaint_-infty^inftymax 0, ye^-fracleft(y-alpharight)^22sigma^2dy\
                &=& frac1sqrt2pisigmaint_0^infty ye^-fracleft(y-alpharight)^22sigma^2dy\
                &=& frac1sqrt2piint_-fracalphasigma^inftyleft(alpha+sigma zright)e^-fracz^22dz\
                &=& alphaleft(1-mathcalN_1(0,,1)left(-fracalphasigmaright)right)+fracsigmasqrt2pi e^-fracalpha^22sigma^2
                endeqnarray






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  $ mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ] $ can also be calculated exactly whenever $ cal D=mathcalN_n(mu,,Sigma) $ is multivariate normal. In this case $ a^tophspace-0.2emx simmathcalN_1(a^tophspace-0.2emmu,,a^topSigma a) $, so putting $ alpha=a^tophspace-0.2emmu $ and $ sigma=sqrta^topSigma a $, we get
                  begineqnarray mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ]&=&frac1sqrt2pisigmaint_-infty^inftymax 0, ye^-fracleft(y-alpharight)^22sigma^2dy\
                  &=& frac1sqrt2pisigmaint_0^infty ye^-fracleft(y-alpharight)^22sigma^2dy\
                  &=& frac1sqrt2piint_-fracalphasigma^inftyleft(alpha+sigma zright)e^-fracz^22dz\
                  &=& alphaleft(1-mathcalN_1(0,,1)left(-fracalphasigmaright)right)+fracsigmasqrt2pi e^-fracalpha^22sigma^2
                  endeqnarray






                  share|cite|improve this answer









                  $endgroup$



                  $ mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ] $ can also be calculated exactly whenever $ cal D=mathcalN_n(mu,,Sigma) $ is multivariate normal. In this case $ a^tophspace-0.2emx simmathcalN_1(a^tophspace-0.2emmu,,a^topSigma a) $, so putting $ alpha=a^tophspace-0.2emmu $ and $ sigma=sqrta^topSigma a $, we get
                  begineqnarray mathbbE_x sim cal D [ max 0, a^tophspace-0.2em x ]&=&frac1sqrt2pisigmaint_-infty^inftymax 0, ye^-fracleft(y-alpharight)^22sigma^2dy\
                  &=& frac1sqrt2pisigmaint_0^infty ye^-fracleft(y-alpharight)^22sigma^2dy\
                  &=& frac1sqrt2piint_-fracalphasigma^inftyleft(alpha+sigma zright)e^-fracz^22dz\
                  &=& alphaleft(1-mathcalN_1(0,,1)left(-fracalphasigmaright)right)+fracsigmasqrt2pi e^-fracalpha^22sigma^2
                  endeqnarray







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 2 at 9:53









                  lonza leggieralonza leggiera

                  1,480128




                  1,480128



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170692%2fexpectation-of-the-max-operator%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                      Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε