Calculate $lim_xto infty(x + ln(fracpi2 - arctan(x))$ using L'hopital's rule Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluating $xe^-x/lambdabig|_0^infty$ with and without L'Hopital's Ruleevaluate $lim_x to 0+ fracx-sin x(x sin x)^3/2$How to evaluate $lim_x to inftyleft(1 + frac2xright)^3x$ using L'Hôpital's rule?L'Hopital's Rule, Factorials, and DerivativesCan de l'Hopital's rule be used in the case $pm frac-inftyinfty$?Finding the limit $lim_xrightarrow 0^+fracint_1^+inftyfrace^-xyquad-1y^3dyln(1+x).$application of L'Hopital's rule?Find the limit using l'Hopital's Rule$lim_x to infty e^x - frace^xx+1$ Application of L'Hopital's RuleCalculating limit of ln(arctan(x)) using chain rule

If a VARCHAR(MAX) column is included in an index, is the entire value always stored in the index page(s)?

why is Nikon 1.4g better when Nikon 1.8g is sharper?

Old style "caution" boxes

Should I use a zero-interest credit card for a large one-time purchase?

Why wasn't DOSKEY integrated with COMMAND.COM?

What is the meaning of the simile “quick as silk”?

Chinese Seal on silk painting - what does it mean?

Circuit to "zoom in" on mV fluctuations of a DC signal?

Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?

Wu formula for manifolds with boundary

Dating a Former Employee

Do I really need recursive chmod to restrict access to a folder?

Fundamental Solution of the Pell Equation

What would be the ideal power source for a cybernetic eye?

How to deal with a team lead who never gives me credit?

Is safe to use va_start macro with this as parameter?

What is implied by the word 'Desika'

Is there such thing as an Availability Group failover trigger?

Trademark violation for app?

Generate an RGB colour grid

Would "destroying" Wurmcoil Engine prevent its tokens from being created?

What is homebrew?

What font is "z" in "z-score"?

Fantasy story; one type of magic grows in power with use, but the more powerful they are, they more they are drawn to travel to their source



Calculate $lim_xto infty(x + ln(fracpi2 - arctan(x))$ using L'hopital's rule



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluating $xe^-x/lambdabig|_0^infty$ with and without L'Hopital's Ruleevaluate $lim_x to 0+ fracx-sin x(x sin x)^3/2$How to evaluate $lim_x to inftyleft(1 + frac2xright)^3x$ using L'Hôpital's rule?L'Hopital's Rule, Factorials, and DerivativesCan de l'Hopital's rule be used in the case $pm frac-inftyinfty$?Finding the limit $lim_xrightarrow 0^+fracint_1^+inftyfrace^-xyquad-1y^3dyln(1+x).$application of L'Hopital's rule?Find the limit using l'Hopital's Rule$lim_x to infty e^x - frace^xx+1$ Application of L'Hopital's RuleCalculating limit of ln(arctan(x)) using chain rule










1












$begingroup$


I'm new to L'hopital's rule. I know i need to convert it to $fracinftyinfty$ or $frac00$. But I have no idea how to convert the following equation. Thanks in advance for your help!



$$lim_xto infty(x + ln(fracpi2 - arctan(x))$$










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I'm new to L'hopital's rule. I know i need to convert it to $fracinftyinfty$ or $frac00$. But I have no idea how to convert the following equation. Thanks in advance for your help!



    $$lim_xto infty(x + ln(fracpi2 - arctan(x))$$










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I'm new to L'hopital's rule. I know i need to convert it to $fracinftyinfty$ or $frac00$. But I have no idea how to convert the following equation. Thanks in advance for your help!



      $$lim_xto infty(x + ln(fracpi2 - arctan(x))$$










      share|cite|improve this question











      $endgroup$




      I'm new to L'hopital's rule. I know i need to convert it to $fracinftyinfty$ or $frac00$. But I have no idea how to convert the following equation. Thanks in advance for your help!



      $$lim_xto infty(x + ln(fracpi2 - arctan(x))$$







      derivatives






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 1 at 13:39









      YuiTo Cheng

      2,52341037




      2,52341037










      asked Apr 1 at 11:49









      HellowhatsupHellowhatsup

      445




      445




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Hint:
          Consider $x+lnleft(fracpi2-arctan(x)right)=\
          -ln(e^-x)+lnleft(fracpi2-arctan(x)right)=\
          =lnleft(fracfracpi2-arctan(x)e^-xright)$






          share|cite|improve this answer









          $endgroup$




















            0












            $begingroup$

            You may also proceed as follows using



            • $operatornamearccotx = fracpi2 - arctan x$


            • $x = cot u$ while considering the limit for $u to 0^+$

            • $sin u ln u = fracsin uucdot underbraceu ln u_=fracln ufrac1ustackrelL'Hosp.sim-u stackrelu to 0^+longrightarrow 0$

            begineqnarray* lim_xto infty(x + ln(fracpi2 - arctan(x))
            & stackrelx=cot u= & cot u + ln u \
            & = & fraccolorblueoverbracecos u + sin u ln u^stackrelu to 0^+longrightarrow1sin u\
            & stackrelu to 0^+longrightarrow & +infty
            endeqnarray*






            share|cite|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170511%2fcalculate-lim-x-to-inftyx-ln-frac-pi2-arctanx-using-lhopital%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Hint:
              Consider $x+lnleft(fracpi2-arctan(x)right)=\
              -ln(e^-x)+lnleft(fracpi2-arctan(x)right)=\
              =lnleft(fracfracpi2-arctan(x)e^-xright)$






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                Hint:
                Consider $x+lnleft(fracpi2-arctan(x)right)=\
                -ln(e^-x)+lnleft(fracpi2-arctan(x)right)=\
                =lnleft(fracfracpi2-arctan(x)e^-xright)$






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  Hint:
                  Consider $x+lnleft(fracpi2-arctan(x)right)=\
                  -ln(e^-x)+lnleft(fracpi2-arctan(x)right)=\
                  =lnleft(fracfracpi2-arctan(x)e^-xright)$






                  share|cite|improve this answer









                  $endgroup$



                  Hint:
                  Consider $x+lnleft(fracpi2-arctan(x)right)=\
                  -ln(e^-x)+lnleft(fracpi2-arctan(x)right)=\
                  =lnleft(fracfracpi2-arctan(x)e^-xright)$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 1 at 11:56









                  Gabriele CasseseGabriele Cassese

                  1,226316




                  1,226316





















                      0












                      $begingroup$

                      You may also proceed as follows using



                      • $operatornamearccotx = fracpi2 - arctan x$


                      • $x = cot u$ while considering the limit for $u to 0^+$

                      • $sin u ln u = fracsin uucdot underbraceu ln u_=fracln ufrac1ustackrelL'Hosp.sim-u stackrelu to 0^+longrightarrow 0$

                      begineqnarray* lim_xto infty(x + ln(fracpi2 - arctan(x))
                      & stackrelx=cot u= & cot u + ln u \
                      & = & fraccolorblueoverbracecos u + sin u ln u^stackrelu to 0^+longrightarrow1sin u\
                      & stackrelu to 0^+longrightarrow & +infty
                      endeqnarray*






                      share|cite|improve this answer











                      $endgroup$

















                        0












                        $begingroup$

                        You may also proceed as follows using



                        • $operatornamearccotx = fracpi2 - arctan x$


                        • $x = cot u$ while considering the limit for $u to 0^+$

                        • $sin u ln u = fracsin uucdot underbraceu ln u_=fracln ufrac1ustackrelL'Hosp.sim-u stackrelu to 0^+longrightarrow 0$

                        begineqnarray* lim_xto infty(x + ln(fracpi2 - arctan(x))
                        & stackrelx=cot u= & cot u + ln u \
                        & = & fraccolorblueoverbracecos u + sin u ln u^stackrelu to 0^+longrightarrow1sin u\
                        & stackrelu to 0^+longrightarrow & +infty
                        endeqnarray*






                        share|cite|improve this answer











                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          You may also proceed as follows using



                          • $operatornamearccotx = fracpi2 - arctan x$


                          • $x = cot u$ while considering the limit for $u to 0^+$

                          • $sin u ln u = fracsin uucdot underbraceu ln u_=fracln ufrac1ustackrelL'Hosp.sim-u stackrelu to 0^+longrightarrow 0$

                          begineqnarray* lim_xto infty(x + ln(fracpi2 - arctan(x))
                          & stackrelx=cot u= & cot u + ln u \
                          & = & fraccolorblueoverbracecos u + sin u ln u^stackrelu to 0^+longrightarrow1sin u\
                          & stackrelu to 0^+longrightarrow & +infty
                          endeqnarray*






                          share|cite|improve this answer











                          $endgroup$



                          You may also proceed as follows using



                          • $operatornamearccotx = fracpi2 - arctan x$


                          • $x = cot u$ while considering the limit for $u to 0^+$

                          • $sin u ln u = fracsin uucdot underbraceu ln u_=fracln ufrac1ustackrelL'Hosp.sim-u stackrelu to 0^+longrightarrow 0$

                          begineqnarray* lim_xto infty(x + ln(fracpi2 - arctan(x))
                          & stackrelx=cot u= & cot u + ln u \
                          & = & fraccolorblueoverbracecos u + sin u ln u^stackrelu to 0^+longrightarrow1sin u\
                          & stackrelu to 0^+longrightarrow & +infty
                          endeqnarray*







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Apr 1 at 13:09

























                          answered Apr 1 at 12:45









                          trancelocationtrancelocation

                          14.3k1929




                          14.3k1929



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170511%2fcalculate-lim-x-to-inftyx-ln-frac-pi2-arctanx-using-lhopital%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                              Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                              Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε