Skip to main content

Dykhurdfytsen op de Olympyske Simmerspullen 1912 Ynhâld ôfstannen | Utslaggen | Navigaasjemenu59° 30′ 0″ N, 17° 12′ 0″ E

Dykhurdfytse op de Olympyske Simmerspullen


1912StokholmSwedendykhurdfytsen












Dykhurdfytsen op de Olympyske Simmerspullen 1912




Ut Wikipedy






Jump to navigation
Jump to search


Internet-web-browser.svg 59° 30′ 0″ N, 17° 12′ 0″ E

De Olympyske Simmerspullen 1912, ek wol de Ve Olympiade neamd waarden yn 1912 yn Stokholm, Sweden hâlden.It dykhurdfytsen waard hâlden by de Mälaren, in mar yn de buurt fan Stokholm.




Ynhâld





  • 1 ôfstannen

    • 1.1 Manlju



  • 2 Utslaggen

    • 2.1 Tiidrit, yndividueel


    • 2.2 Tiidrit, lannen





ôfstannen |



Manlju |


  • Tiidrit, yndividueel - 320 km

  • Tiidrit, lannen - 4x320 km


Utslaggen |



Tiidrit, yndividueel |




















Manlju
#
Fytser
Lân
Tiid
GoudRudolph Lewis
Flagge fan Súd-Afrika RSA
10:42:39.0
SulverFrederick Grubb
Flagge fan Grut-Brittanje GBR
10:51:24.2
BrûnsCarl Schutte
Flagge fan de Feriene Steaten USA
10:52:38.8


Tiidrit, lannen |




















Manlju
#
Fytser
Lân
Tiid
Goud
Erik Friborg
Karl Malm
Axel Persson
Karl Lönn

Flagge fan Sweden SWE
44:35:33.6
Sulver
Frederick Grubb
Leon Meredith
Charles Moss
William Hammond

Flagge fan Grut-Brittanje GBR
44:44:39.4
Brûns
Carl Schutte
Alvin Loftes
Albert Kruschel
Walter Martin

Flagge fan de Feriene Steaten USA
44:47:55.5









Cycling (road) pictogram.svg


Dykhurdfytsen op de Olympyske Simmerspullen

Atene 1896 | Stokholm 1912 | Antwerpen 1920 | Parys 1924 | Amsterdam 1928 | Los Angeles 1932 | Berlyn 1936 | Londen 1948 | Helsinky 1952 | Melbourne 1956 | Rome 1960 | Tokyo 1964 | Meksiko 1968 | München 1972 | Montreal 1976 | Moskou 1980 | Los Angeles 1984 | Seoul 1988 | Barselona 1992 | Atlanta 1996 | Sydney 2000 | Atene 2004 | Peking 2008 | Londen 2012 | Rio de Janêro 2016 |

wizigje











Olympyske Ringen.jpg


Olympyske Simmerspullen 1912

Flag of Sweden.svg


Atletyk | Dykhurdfytse | Fuotbal | Gymnastyk | Hynstesport | Hurdsile | Keunstdûke | Moderne fiifkamp | Roeie | Skermje | Swimme | Tennis | Toulûke | Wetterpolo | Wrakselje |

wizigje



Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Dykhurdfytsen_op_de_Olympyske_Simmerspullen_1912&oldid=671699"










Navigaasjemenu

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.056","walltime":"0.130","ppvisitednodes":"value":76,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":4999,"limit":2097152,"templateargumentsize":"value":88,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 74.475 1 -total"," 41.08% 30.593 1 Berjocht:Dykhurdfytse_op_de_Olympyske_Simmerspullen"," 14.38% 10.707 1 Berjocht:Olympyske_Simmerspullen_1912"," 13.71% 10.209 1 Berjocht:RSA"," 9.95% 7.410 1 Berjocht:Koördinaten"," 5.05% 3.762 1 Berjocht:MapsServer"," 3.68% 2.738 1 Berjocht:SWE"," 3.46% 2.574 2 Berjocht:USA"," 3.43% 2.553 2 Berjocht:Brûns"," 3.16% 2.350 2 Berjocht:GBR"],"cachereport":"origin":"mw1273","timestamp":"20190401143537","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":90,"wgHostname":"mw1320"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε