Is a composition of a Lipschitz continuous function with a Continuously Differentiable function Lipschitz over an unbounded set? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)If $f:mathbb R^ntomathbb R$ is twice continuously differentiable, then $nabla f$ is Lipschitz continuousIs the partial derivative continuous w.r.t. other variables that locally Lipschitz continuous to the function?Continuous and almost everywhere continuously differentiable with bounded gradient implies Lipschitz?Is there a function on a compact interval that is differentiable but not Lipschitz continuous?Example for unbounded Lipschitz function on a bounded domainContinuously differentiable implies Lipschitz in one variable?'Uniformly' locally Lipschitz implies continuously differentiableConditions for a function to be Lipschitz or just uniformly continuousConcatenation of continuous function with uniformly convergent series converges uniformly?How to prove the following function is not Lipschitz continuous?
How would a mousetrap for use in space work?
Why wasn't DOSKEY integrated with COMMAND.COM?
Why do the resolve message appear first?
Can melee weapons be used to deliver Contact Poisons?
Denied boarding although I have proper visa and documentation. To whom should I make a complaint?
What do you call the main part of a joke?
Did MS DOS itself ever use blinking text?
What causes the direction of lightning flashes?
Dating a Former Employee
On SQL Server, is it possible to restrict certain users from using certain functions, operators or statements?
Crossing US/Canada Border for less than 24 hours
How to react to hostile behavior from a senior developer?
8 Prisoners wearing hats
Fantasy story; one type of magic grows in power with use, but the more powerful they are, they more they are drawn to travel to their source
For a new assistant professor in CS, how to build/manage a publication pipeline
Do wooden building fires get hotter than 600°C?
Why aren't air breathing engines used as small first stages
Can a party unilaterally change candidates in preparation for a General election?
What are the out-of-universe reasons for the references to Toby Maguire-era Spider-Man in ITSV
Maximum summed powersets with non-adjacent items
What does this Jacques Hadamard quote mean?
Is it a good idea to use CNN to classify 1D signal?
How do I stop a creek from eroding my steep embankment?
Why are there no cargo aircraft with "flying wing" design?
Is a composition of a Lipschitz continuous function with a Continuously Differentiable function Lipschitz over an unbounded set?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)If $f:mathbb R^ntomathbb R$ is twice continuously differentiable, then $nabla f$ is Lipschitz continuousIs the partial derivative continuous w.r.t. other variables that locally Lipschitz continuous to the function?Continuous and almost everywhere continuously differentiable with bounded gradient implies Lipschitz?Is there a function on a compact interval that is differentiable but not Lipschitz continuous?Example for unbounded Lipschitz function on a bounded domainContinuously differentiable implies Lipschitz in one variable?'Uniformly' locally Lipschitz implies continuously differentiableConditions for a function to be Lipschitz or just uniformly continuousConcatenation of continuous function with uniformly convergent series converges uniformly?How to prove the following function is not Lipschitz continuous?
$begingroup$
Assume the following:
$U subseteq mathbbR^m$ is a closed and connected set (not necessarily bounded),
$Xi in Lip_alpha(U,X)$, where $X subseteq mathbbR^n$,
$g in C^1(X,Y)$, where $X subseteq mathbbY^m$.
Is the function $G = g circ Xi: U rightarrow Y$ Lipschitz?
Up to now, I cannot find neither a way to prove it true, nor a counterexample to prove it wrong. The problem is that: $Xi(U)$ is not necessarily bounded, so I cannot assume $g$ Lipschitz on $X$, even if $g in C^1(X)$. If $g$ would be Lipschitz, then the problem is trivial.
general-topology continuity lipschitz-functions
$endgroup$
add a comment |
$begingroup$
Assume the following:
$U subseteq mathbbR^m$ is a closed and connected set (not necessarily bounded),
$Xi in Lip_alpha(U,X)$, where $X subseteq mathbbR^n$,
$g in C^1(X,Y)$, where $X subseteq mathbbY^m$.
Is the function $G = g circ Xi: U rightarrow Y$ Lipschitz?
Up to now, I cannot find neither a way to prove it true, nor a counterexample to prove it wrong. The problem is that: $Xi(U)$ is not necessarily bounded, so I cannot assume $g$ Lipschitz on $X$, even if $g in C^1(X)$. If $g$ would be Lipschitz, then the problem is trivial.
general-topology continuity lipschitz-functions
$endgroup$
3
$begingroup$
What about if the Lipschitz map is the identity map, and $g(x) = ||x||^2$? Is the composition Lipschitz?
$endgroup$
– George Dewhirst
Apr 1 at 13:40
$begingroup$
Mmm I think this is a good counterexample, I did not think about the identity map as Lipschitz function!
$endgroup$
– giovanni_13
Apr 1 at 13:55
add a comment |
$begingroup$
Assume the following:
$U subseteq mathbbR^m$ is a closed and connected set (not necessarily bounded),
$Xi in Lip_alpha(U,X)$, where $X subseteq mathbbR^n$,
$g in C^1(X,Y)$, where $X subseteq mathbbY^m$.
Is the function $G = g circ Xi: U rightarrow Y$ Lipschitz?
Up to now, I cannot find neither a way to prove it true, nor a counterexample to prove it wrong. The problem is that: $Xi(U)$ is not necessarily bounded, so I cannot assume $g$ Lipschitz on $X$, even if $g in C^1(X)$. If $g$ would be Lipschitz, then the problem is trivial.
general-topology continuity lipschitz-functions
$endgroup$
Assume the following:
$U subseteq mathbbR^m$ is a closed and connected set (not necessarily bounded),
$Xi in Lip_alpha(U,X)$, where $X subseteq mathbbR^n$,
$g in C^1(X,Y)$, where $X subseteq mathbbY^m$.
Is the function $G = g circ Xi: U rightarrow Y$ Lipschitz?
Up to now, I cannot find neither a way to prove it true, nor a counterexample to prove it wrong. The problem is that: $Xi(U)$ is not necessarily bounded, so I cannot assume $g$ Lipschitz on $X$, even if $g in C^1(X)$. If $g$ would be Lipschitz, then the problem is trivial.
general-topology continuity lipschitz-functions
general-topology continuity lipschitz-functions
asked Apr 1 at 13:08
giovanni_13giovanni_13
757
757
3
$begingroup$
What about if the Lipschitz map is the identity map, and $g(x) = ||x||^2$? Is the composition Lipschitz?
$endgroup$
– George Dewhirst
Apr 1 at 13:40
$begingroup$
Mmm I think this is a good counterexample, I did not think about the identity map as Lipschitz function!
$endgroup$
– giovanni_13
Apr 1 at 13:55
add a comment |
3
$begingroup$
What about if the Lipschitz map is the identity map, and $g(x) = ||x||^2$? Is the composition Lipschitz?
$endgroup$
– George Dewhirst
Apr 1 at 13:40
$begingroup$
Mmm I think this is a good counterexample, I did not think about the identity map as Lipschitz function!
$endgroup$
– giovanni_13
Apr 1 at 13:55
3
3
$begingroup$
What about if the Lipschitz map is the identity map, and $g(x) = ||x||^2$? Is the composition Lipschitz?
$endgroup$
– George Dewhirst
Apr 1 at 13:40
$begingroup$
What about if the Lipschitz map is the identity map, and $g(x) = ||x||^2$? Is the composition Lipschitz?
$endgroup$
– George Dewhirst
Apr 1 at 13:40
$begingroup$
Mmm I think this is a good counterexample, I did not think about the identity map as Lipschitz function!
$endgroup$
– giovanni_13
Apr 1 at 13:55
$begingroup$
Mmm I think this is a good counterexample, I did not think about the identity map as Lipschitz function!
$endgroup$
– giovanni_13
Apr 1 at 13:55
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170595%2fis-a-composition-of-a-lipschitz-continuous-function-with-a-continuously-differen%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170595%2fis-a-composition-of-a-lipschitz-continuous-function-with-a-continuously-differen%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
What about if the Lipschitz map is the identity map, and $g(x) = ||x||^2$? Is the composition Lipschitz?
$endgroup$
– George Dewhirst
Apr 1 at 13:40
$begingroup$
Mmm I think this is a good counterexample, I did not think about the identity map as Lipschitz function!
$endgroup$
– giovanni_13
Apr 1 at 13:55