Unnecessary finite dimensionality requirement in Theorem 5.1.8 of Sweedler’s “Hopf Algebras” The Next CEO of Stack OverflowAnnihilator of maximal ideals in a finite dimensional algebraIf a Hopf Algebra has a nontrivial, finite-dimensional right ideal, then it is finite dimensionalPrimitive elements of finite dimensional Hopf algebrasFinite-dimensional algebras which do not satisfy Wedderburn's principal theoremClassification of special Hopf algebrasUsing nilpotent rings for constructing triangular Hopf Algebras using Etingof, Gelaki methodProof of Weyl's theorem on semisimple lie algebras in Milne's notesSearching for Proofs of Wedderburn Theorem for finite dimensional simple AlgebrasExistence of integrals in f.d Hopf algebrasExercise on block theory of finite dimensional algebras

Is it possible to create a QR code using text?

Is there a rule of thumb for determining the amount one should accept for a settlement offer?

Is it correct to say moon starry nights?

Calculate the Mean mean of two numbers

Prodigo = pro + ago?

Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?

Is it OK to decorate a log book cover?

"Eavesdropping" vs "Listen in on"

Compensation for working overtime on Saturdays

Man transported from Alternate World into ours by a Neutrino Detector

How to pronounce fünf in 45

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

That's an odd coin - I wonder why

Does Germany produce more waste than the US?

Upgrading From a 9 Speed Sora Derailleur?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Creating a script with console commands

Strange use of "whether ... than ..." in official text

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version

The sum of any ten consecutive numbers from a fibonacci sequence is divisible by 11

Is a linearly independent set whose span is dense a Schauder basis?

How should I connect my cat5 cable to connectors having an orange-green line?

Free fall ellipse or parabola?

Avoiding the "not like other girls" trope?



Unnecessary finite dimensionality requirement in Theorem 5.1.8 of Sweedler’s “Hopf Algebras”



The Next CEO of Stack OverflowAnnihilator of maximal ideals in a finite dimensional algebraIf a Hopf Algebra has a nontrivial, finite-dimensional right ideal, then it is finite dimensionalPrimitive elements of finite dimensional Hopf algebrasFinite-dimensional algebras which do not satisfy Wedderburn's principal theoremClassification of special Hopf algebrasUsing nilpotent rings for constructing triangular Hopf Algebras using Etingof, Gelaki methodProof of Weyl's theorem on semisimple lie algebras in Milne's notesSearching for Proofs of Wedderburn Theorem for finite dimensional simple AlgebrasExistence of integrals in f.d Hopf algebrasExercise on block theory of finite dimensional algebras










1












$begingroup$


I’m currently reading Sweedler’s Hopf Algebras, but am confused by the finite dimensionality in the following theorem:




Theorem 5.1.8 A finite dimensional Hopf algebra $H$ is semi-simple as an algebra if and only if$epsilon(int) neq 0$.




Sweedler seems to use the finite dimensionality of $H$ only for the implication
$$
text$H$ semisimple
implies
epsilon( textstyleint ) neq 0
$$

by using that $dim int = 1$, which seems unnecessary to me.




Question: Why does Sweedler requires $H$ to be finite dimensional?




Sweedler’s argumentation is as follows:




If $H$ is semi-simple, then there is a left ideal $I$ such that
$$
H = operatornameKer epsilon oplus I.
$$

For $x in operatornameKer epsilon$ and $y in I$ we have $xy in operatornameKer epsilon cap I$.
Hence $xy = 0$.
Then for any $h in H$,
$$
h = (h - epsilon(h)1) + epsilon(h)1,
$$

so $hy = epsilon(h)y$, since $(h - epsilon(h) 1) in operatornameKer epsilon$.
Thus $I subseteq int$, a $1$-dimensional space, hence $I = int$.
Since $H = operatornameKer epsilon oplus I$ we conclude $epsilon(int) neq 0$.




It seems to me that the inclusion $I subseteq int$ sufficies because then $epsilon(textstyle int) supseteq epsilon(I) neq 0$.



Remark: If I’m not mistaken then it should also follow from a later exercise (any Hopf algebra that contains a nonzero finite dimensional one-sided ideal is already finite dimensional itself) that the above theorem also holds for any infinite dimensional Hopf algebra $H$: By considering the above one-dimensional ideal $I$ we see that $H$ cannot be semisimple. On the other hand $int = 0$ (and hence $epsilon(int) = 0$) because for every nonzero $x in int$ the one-dimensional span $kx$ would be a left ideal.
But this doesn’t explain why Sweedler restricts the above theorem to finite dimensional Hopf algebras in the first place.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I’m currently reading Sweedler’s Hopf Algebras, but am confused by the finite dimensionality in the following theorem:




    Theorem 5.1.8 A finite dimensional Hopf algebra $H$ is semi-simple as an algebra if and only if$epsilon(int) neq 0$.




    Sweedler seems to use the finite dimensionality of $H$ only for the implication
    $$
    text$H$ semisimple
    implies
    epsilon( textstyleint ) neq 0
    $$

    by using that $dim int = 1$, which seems unnecessary to me.




    Question: Why does Sweedler requires $H$ to be finite dimensional?




    Sweedler’s argumentation is as follows:




    If $H$ is semi-simple, then there is a left ideal $I$ such that
    $$
    H = operatornameKer epsilon oplus I.
    $$

    For $x in operatornameKer epsilon$ and $y in I$ we have $xy in operatornameKer epsilon cap I$.
    Hence $xy = 0$.
    Then for any $h in H$,
    $$
    h = (h - epsilon(h)1) + epsilon(h)1,
    $$

    so $hy = epsilon(h)y$, since $(h - epsilon(h) 1) in operatornameKer epsilon$.
    Thus $I subseteq int$, a $1$-dimensional space, hence $I = int$.
    Since $H = operatornameKer epsilon oplus I$ we conclude $epsilon(int) neq 0$.




    It seems to me that the inclusion $I subseteq int$ sufficies because then $epsilon(textstyle int) supseteq epsilon(I) neq 0$.



    Remark: If I’m not mistaken then it should also follow from a later exercise (any Hopf algebra that contains a nonzero finite dimensional one-sided ideal is already finite dimensional itself) that the above theorem also holds for any infinite dimensional Hopf algebra $H$: By considering the above one-dimensional ideal $I$ we see that $H$ cannot be semisimple. On the other hand $int = 0$ (and hence $epsilon(int) = 0$) because for every nonzero $x in int$ the one-dimensional span $kx$ would be a left ideal.
    But this doesn’t explain why Sweedler restricts the above theorem to finite dimensional Hopf algebras in the first place.










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      1



      $begingroup$


      I’m currently reading Sweedler’s Hopf Algebras, but am confused by the finite dimensionality in the following theorem:




      Theorem 5.1.8 A finite dimensional Hopf algebra $H$ is semi-simple as an algebra if and only if$epsilon(int) neq 0$.




      Sweedler seems to use the finite dimensionality of $H$ only for the implication
      $$
      text$H$ semisimple
      implies
      epsilon( textstyleint ) neq 0
      $$

      by using that $dim int = 1$, which seems unnecessary to me.




      Question: Why does Sweedler requires $H$ to be finite dimensional?




      Sweedler’s argumentation is as follows:




      If $H$ is semi-simple, then there is a left ideal $I$ such that
      $$
      H = operatornameKer epsilon oplus I.
      $$

      For $x in operatornameKer epsilon$ and $y in I$ we have $xy in operatornameKer epsilon cap I$.
      Hence $xy = 0$.
      Then for any $h in H$,
      $$
      h = (h - epsilon(h)1) + epsilon(h)1,
      $$

      so $hy = epsilon(h)y$, since $(h - epsilon(h) 1) in operatornameKer epsilon$.
      Thus $I subseteq int$, a $1$-dimensional space, hence $I = int$.
      Since $H = operatornameKer epsilon oplus I$ we conclude $epsilon(int) neq 0$.




      It seems to me that the inclusion $I subseteq int$ sufficies because then $epsilon(textstyle int) supseteq epsilon(I) neq 0$.



      Remark: If I’m not mistaken then it should also follow from a later exercise (any Hopf algebra that contains a nonzero finite dimensional one-sided ideal is already finite dimensional itself) that the above theorem also holds for any infinite dimensional Hopf algebra $H$: By considering the above one-dimensional ideal $I$ we see that $H$ cannot be semisimple. On the other hand $int = 0$ (and hence $epsilon(int) = 0$) because for every nonzero $x in int$ the one-dimensional span $kx$ would be a left ideal.
      But this doesn’t explain why Sweedler restricts the above theorem to finite dimensional Hopf algebras in the first place.










      share|cite|improve this question











      $endgroup$




      I’m currently reading Sweedler’s Hopf Algebras, but am confused by the finite dimensionality in the following theorem:




      Theorem 5.1.8 A finite dimensional Hopf algebra $H$ is semi-simple as an algebra if and only if$epsilon(int) neq 0$.




      Sweedler seems to use the finite dimensionality of $H$ only for the implication
      $$
      text$H$ semisimple
      implies
      epsilon( textstyleint ) neq 0
      $$

      by using that $dim int = 1$, which seems unnecessary to me.




      Question: Why does Sweedler requires $H$ to be finite dimensional?




      Sweedler’s argumentation is as follows:




      If $H$ is semi-simple, then there is a left ideal $I$ such that
      $$
      H = operatornameKer epsilon oplus I.
      $$

      For $x in operatornameKer epsilon$ and $y in I$ we have $xy in operatornameKer epsilon cap I$.
      Hence $xy = 0$.
      Then for any $h in H$,
      $$
      h = (h - epsilon(h)1) + epsilon(h)1,
      $$

      so $hy = epsilon(h)y$, since $(h - epsilon(h) 1) in operatornameKer epsilon$.
      Thus $I subseteq int$, a $1$-dimensional space, hence $I = int$.
      Since $H = operatornameKer epsilon oplus I$ we conclude $epsilon(int) neq 0$.




      It seems to me that the inclusion $I subseteq int$ sufficies because then $epsilon(textstyle int) supseteq epsilon(I) neq 0$.



      Remark: If I’m not mistaken then it should also follow from a later exercise (any Hopf algebra that contains a nonzero finite dimensional one-sided ideal is already finite dimensional itself) that the above theorem also holds for any infinite dimensional Hopf algebra $H$: By considering the above one-dimensional ideal $I$ we see that $H$ cannot be semisimple. On the other hand $int = 0$ (and hence $epsilon(int) = 0$) because for every nonzero $x in int$ the one-dimensional span $kx$ would be a left ideal.
      But this doesn’t explain why Sweedler restricts the above theorem to finite dimensional Hopf algebras in the first place.







      abstract-algebra proof-explanation hopf-algebras






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 4 at 23:07









      Bernard

      124k741118




      124k741118










      asked Mar 4 at 22:33









      Jendrik StelznerJendrik Stelzner

      7,92121440




      7,92121440




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          You don't need that hypothesis in the proof but you don't earn nothing by removing it, as a Hopf algebra satisfying the above conditions is automatically finite-dimensional. You may in fact prove the following result.



          Theorem (Maschke Theorem for Hopf algebras) For a Hopf
          algebra over a field $Bbbk $ the following assertions are equivalent.




          1. $H$ is semisimple as a ring.

          2. There exists $tin int_H^l$ such that $%
            varepsilon left( tright) =1$
            .


          3. $H$ is separable as an algebra.

          Proof:
          To prove that $left( 1right) $ implies $left( 2right) $ consider the left $H$-linear morphism $varepsilon :Hrightarrow Bbbk $. Since $H$ is semisimple and $varepsilon $ is surjective, it admits a left $H$-linear section $sigma :Bbbk rightarrow H$. Set $t:=sigma left( 1_Bbbkright) $ and observe that for every $hin H$ we have $ht=hsigma left(1_Bbbk right) =sigma left( hcdot 1_Bbbk right) =sigma left(varepsilon left( hright) 1_Bbbk right) =varepsilon left( hright) t$
          and that $varepsilon left( tright) =varepsilon left( sigma left(1_Bbbk right) right) =1_Bbbk $.



          To prove that $left( 2right) $ implies $left( 3right) $ consider the Casimir element $e=sum t_left( 1right) otimes Sleft( t_left( 2right) right) $. Of course, $sum t_left( 1right) Sleft( t_left( 2right) right) =varepsilon left( tright) 1_B=1_B $, whence $e$ is a separability idempotent.



          Finally, to prove that $left( 3right) $ implies $left( 1right) $ pick any surjective morphism of left $H$-modules $pi:Mrightarrow N$. Since it is in particular of $Bbbk $-vector spaces it admits a $Bbbk $-linear section $sigma :Nrightarrow M$. Of course, $sigma $ is not $H$-linear in general, but we may consider $tau:Nrightarrow M:nlongmapsto sum e^prime sigma left( e^prime prime
          nright) $
          where $e=sum e'otimes e''$ is the separability idempotent. This is $H$-linear because $sum e^prime sigma left(e^prime prime hnright) =sum he^prime sigma left( e^prime primenright) $ for every $hin H$ and it is still a section since $pi left(tau left( nright) right) =sum pi left( e^prime sigma left(e^prime prime nright) right) =sum e^prime pi left( sigma left(e^prime prime nright) right) =sum e^prime e^prime prime n=n$
          for every $nin N$. $square$



          Now the point is that a separable $Bbbk$-algebra is always finite-dimensional.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3135471%2funnecessary-finite-dimensionality-requirement-in-theorem-5-1-8-of-sweedler-s-ho%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            You don't need that hypothesis in the proof but you don't earn nothing by removing it, as a Hopf algebra satisfying the above conditions is automatically finite-dimensional. You may in fact prove the following result.



            Theorem (Maschke Theorem for Hopf algebras) For a Hopf
            algebra over a field $Bbbk $ the following assertions are equivalent.




            1. $H$ is semisimple as a ring.

            2. There exists $tin int_H^l$ such that $%
              varepsilon left( tright) =1$
              .


            3. $H$ is separable as an algebra.

            Proof:
            To prove that $left( 1right) $ implies $left( 2right) $ consider the left $H$-linear morphism $varepsilon :Hrightarrow Bbbk $. Since $H$ is semisimple and $varepsilon $ is surjective, it admits a left $H$-linear section $sigma :Bbbk rightarrow H$. Set $t:=sigma left( 1_Bbbkright) $ and observe that for every $hin H$ we have $ht=hsigma left(1_Bbbk right) =sigma left( hcdot 1_Bbbk right) =sigma left(varepsilon left( hright) 1_Bbbk right) =varepsilon left( hright) t$
            and that $varepsilon left( tright) =varepsilon left( sigma left(1_Bbbk right) right) =1_Bbbk $.



            To prove that $left( 2right) $ implies $left( 3right) $ consider the Casimir element $e=sum t_left( 1right) otimes Sleft( t_left( 2right) right) $. Of course, $sum t_left( 1right) Sleft( t_left( 2right) right) =varepsilon left( tright) 1_B=1_B $, whence $e$ is a separability idempotent.



            Finally, to prove that $left( 3right) $ implies $left( 1right) $ pick any surjective morphism of left $H$-modules $pi:Mrightarrow N$. Since it is in particular of $Bbbk $-vector spaces it admits a $Bbbk $-linear section $sigma :Nrightarrow M$. Of course, $sigma $ is not $H$-linear in general, but we may consider $tau:Nrightarrow M:nlongmapsto sum e^prime sigma left( e^prime prime
            nright) $
            where $e=sum e'otimes e''$ is the separability idempotent. This is $H$-linear because $sum e^prime sigma left(e^prime prime hnright) =sum he^prime sigma left( e^prime primenright) $ for every $hin H$ and it is still a section since $pi left(tau left( nright) right) =sum pi left( e^prime sigma left(e^prime prime nright) right) =sum e^prime pi left( sigma left(e^prime prime nright) right) =sum e^prime e^prime prime n=n$
            for every $nin N$. $square$



            Now the point is that a separable $Bbbk$-algebra is always finite-dimensional.






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              You don't need that hypothesis in the proof but you don't earn nothing by removing it, as a Hopf algebra satisfying the above conditions is automatically finite-dimensional. You may in fact prove the following result.



              Theorem (Maschke Theorem for Hopf algebras) For a Hopf
              algebra over a field $Bbbk $ the following assertions are equivalent.




              1. $H$ is semisimple as a ring.

              2. There exists $tin int_H^l$ such that $%
                varepsilon left( tright) =1$
                .


              3. $H$ is separable as an algebra.

              Proof:
              To prove that $left( 1right) $ implies $left( 2right) $ consider the left $H$-linear morphism $varepsilon :Hrightarrow Bbbk $. Since $H$ is semisimple and $varepsilon $ is surjective, it admits a left $H$-linear section $sigma :Bbbk rightarrow H$. Set $t:=sigma left( 1_Bbbkright) $ and observe that for every $hin H$ we have $ht=hsigma left(1_Bbbk right) =sigma left( hcdot 1_Bbbk right) =sigma left(varepsilon left( hright) 1_Bbbk right) =varepsilon left( hright) t$
              and that $varepsilon left( tright) =varepsilon left( sigma left(1_Bbbk right) right) =1_Bbbk $.



              To prove that $left( 2right) $ implies $left( 3right) $ consider the Casimir element $e=sum t_left( 1right) otimes Sleft( t_left( 2right) right) $. Of course, $sum t_left( 1right) Sleft( t_left( 2right) right) =varepsilon left( tright) 1_B=1_B $, whence $e$ is a separability idempotent.



              Finally, to prove that $left( 3right) $ implies $left( 1right) $ pick any surjective morphism of left $H$-modules $pi:Mrightarrow N$. Since it is in particular of $Bbbk $-vector spaces it admits a $Bbbk $-linear section $sigma :Nrightarrow M$. Of course, $sigma $ is not $H$-linear in general, but we may consider $tau:Nrightarrow M:nlongmapsto sum e^prime sigma left( e^prime prime
              nright) $
              where $e=sum e'otimes e''$ is the separability idempotent. This is $H$-linear because $sum e^prime sigma left(e^prime prime hnright) =sum he^prime sigma left( e^prime primenright) $ for every $hin H$ and it is still a section since $pi left(tau left( nright) right) =sum pi left( e^prime sigma left(e^prime prime nright) right) =sum e^prime pi left( sigma left(e^prime prime nright) right) =sum e^prime e^prime prime n=n$
              for every $nin N$. $square$



              Now the point is that a separable $Bbbk$-algebra is always finite-dimensional.






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                You don't need that hypothesis in the proof but you don't earn nothing by removing it, as a Hopf algebra satisfying the above conditions is automatically finite-dimensional. You may in fact prove the following result.



                Theorem (Maschke Theorem for Hopf algebras) For a Hopf
                algebra over a field $Bbbk $ the following assertions are equivalent.




                1. $H$ is semisimple as a ring.

                2. There exists $tin int_H^l$ such that $%
                  varepsilon left( tright) =1$
                  .


                3. $H$ is separable as an algebra.

                Proof:
                To prove that $left( 1right) $ implies $left( 2right) $ consider the left $H$-linear morphism $varepsilon :Hrightarrow Bbbk $. Since $H$ is semisimple and $varepsilon $ is surjective, it admits a left $H$-linear section $sigma :Bbbk rightarrow H$. Set $t:=sigma left( 1_Bbbkright) $ and observe that for every $hin H$ we have $ht=hsigma left(1_Bbbk right) =sigma left( hcdot 1_Bbbk right) =sigma left(varepsilon left( hright) 1_Bbbk right) =varepsilon left( hright) t$
                and that $varepsilon left( tright) =varepsilon left( sigma left(1_Bbbk right) right) =1_Bbbk $.



                To prove that $left( 2right) $ implies $left( 3right) $ consider the Casimir element $e=sum t_left( 1right) otimes Sleft( t_left( 2right) right) $. Of course, $sum t_left( 1right) Sleft( t_left( 2right) right) =varepsilon left( tright) 1_B=1_B $, whence $e$ is a separability idempotent.



                Finally, to prove that $left( 3right) $ implies $left( 1right) $ pick any surjective morphism of left $H$-modules $pi:Mrightarrow N$. Since it is in particular of $Bbbk $-vector spaces it admits a $Bbbk $-linear section $sigma :Nrightarrow M$. Of course, $sigma $ is not $H$-linear in general, but we may consider $tau:Nrightarrow M:nlongmapsto sum e^prime sigma left( e^prime prime
                nright) $
                where $e=sum e'otimes e''$ is the separability idempotent. This is $H$-linear because $sum e^prime sigma left(e^prime prime hnright) =sum he^prime sigma left( e^prime primenright) $ for every $hin H$ and it is still a section since $pi left(tau left( nright) right) =sum pi left( e^prime sigma left(e^prime prime nright) right) =sum e^prime pi left( sigma left(e^prime prime nright) right) =sum e^prime e^prime prime n=n$
                for every $nin N$. $square$



                Now the point is that a separable $Bbbk$-algebra is always finite-dimensional.






                share|cite|improve this answer









                $endgroup$



                You don't need that hypothesis in the proof but you don't earn nothing by removing it, as a Hopf algebra satisfying the above conditions is automatically finite-dimensional. You may in fact prove the following result.



                Theorem (Maschke Theorem for Hopf algebras) For a Hopf
                algebra over a field $Bbbk $ the following assertions are equivalent.




                1. $H$ is semisimple as a ring.

                2. There exists $tin int_H^l$ such that $%
                  varepsilon left( tright) =1$
                  .


                3. $H$ is separable as an algebra.

                Proof:
                To prove that $left( 1right) $ implies $left( 2right) $ consider the left $H$-linear morphism $varepsilon :Hrightarrow Bbbk $. Since $H$ is semisimple and $varepsilon $ is surjective, it admits a left $H$-linear section $sigma :Bbbk rightarrow H$. Set $t:=sigma left( 1_Bbbkright) $ and observe that for every $hin H$ we have $ht=hsigma left(1_Bbbk right) =sigma left( hcdot 1_Bbbk right) =sigma left(varepsilon left( hright) 1_Bbbk right) =varepsilon left( hright) t$
                and that $varepsilon left( tright) =varepsilon left( sigma left(1_Bbbk right) right) =1_Bbbk $.



                To prove that $left( 2right) $ implies $left( 3right) $ consider the Casimir element $e=sum t_left( 1right) otimes Sleft( t_left( 2right) right) $. Of course, $sum t_left( 1right) Sleft( t_left( 2right) right) =varepsilon left( tright) 1_B=1_B $, whence $e$ is a separability idempotent.



                Finally, to prove that $left( 3right) $ implies $left( 1right) $ pick any surjective morphism of left $H$-modules $pi:Mrightarrow N$. Since it is in particular of $Bbbk $-vector spaces it admits a $Bbbk $-linear section $sigma :Nrightarrow M$. Of course, $sigma $ is not $H$-linear in general, but we may consider $tau:Nrightarrow M:nlongmapsto sum e^prime sigma left( e^prime prime
                nright) $
                where $e=sum e'otimes e''$ is the separability idempotent. This is $H$-linear because $sum e^prime sigma left(e^prime prime hnright) =sum he^prime sigma left( e^prime primenright) $ for every $hin H$ and it is still a section since $pi left(tau left( nright) right) =sum pi left( e^prime sigma left(e^prime prime nright) right) =sum e^prime pi left( sigma left(e^prime prime nright) right) =sum e^prime e^prime prime n=n$
                for every $nin N$. $square$



                Now the point is that a separable $Bbbk$-algebra is always finite-dimensional.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 28 at 10:24









                Ender WigginsEnder Wiggins

                865421




                865421



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3135471%2funnecessary-finite-dimensionality-requirement-in-theorem-5-1-8-of-sweedler-s-ho%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu