$int_0^1fraclnxln(1+x)1+xdx$ The Next CEO of Stack OverflowWays to prove $ int_0^1 fracln^2(1+x)xdx = fraczeta(3)4$?how to evaluate $int_0^fracpi2frac1sqrtsin xtextdx$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Integral $int_0^infty fracsqrt[3]x+1 - sqrt[3]xsqrtx , mathrm dx$Integral of Bessel function multiplied with sine $int_0^infty J_0(bx) sin(ax) dx$.Definite integral problem of $fracx^nn!$Derivative of improper Integral $f(t)= int_0^1 fracsin(xt)x:dx$Ways to evaluate $int_0^1 int_0^1 frac11-xydxdy = fracpi^26$Asymptotics of a double integral: $ int_0^inftyduint_0^inftydv, frac1(u+v)^2expleft(-fracxu+vright)$Calculate an approximation of $int_0^1int_0^1fraclog(xy)xy-1+log(xy)dxdy$Show that $int_0^inftyfracoperatornameLi_s(-x)x^alpha+1mathrm dx=-frac1alpha^sfracpisin(pi alpha)$

Why was Sir Cadogan fired?

How does a dynamic QR code work?

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version

Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?

Is a linearly independent set whose span is dense a Schauder basis?

Compilation of a 2d array and a 1d array

Avoiding the "not like other girls" trope?

How seriously should I take size and weight limits of hand luggage?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

How should I connect my cat5 cable to connectors having an orange-green line?

How to implement Comparable so it is consistent with identity-equality

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

Free fall ellipse or parabola?

Find the majority element, which appears more than half the time

How exploitable/balanced is this homebrew spell: Spell Permanency?

A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?

How do I secure a TV wall mount?

Mathematica command that allows it to read my intentions

Is it possible to make a 9x9 table fit within the default margins?

How can a day be of 24 hours?

Is it possible to create a QR code using text?

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Upgrading From a 9 Speed Sora Derailleur?

Is it okay to majorly distort historical facts while writing a fiction story?



$int_0^1fraclnxln(1+x)1+xdx$



The Next CEO of Stack OverflowWays to prove $ int_0^1 fracln^2(1+x)xdx = fraczeta(3)4$?how to evaluate $int_0^fracpi2frac1sqrtsin xtextdx$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3}$Integral $int_0^infty frac{sqrt[3]x+1 - sqrt[3]xsqrtx , mathrm dx$Integral of Bessel function multiplied with sine $int_0^infty J_0(bx) sin(ax) dx$.Definite integral problem of $fracx^nn!$Derivative of improper Integral $f(t)= int_0^1 fracsin(xt)x:dx$Ways to evaluate $int_0^1 int_0^1 frac11-xydxdy = fracpi^26$Asymptotics of a double integral: $ int_0^inftyduint_0^inftydv, frac1(u+v)^2expleft(-fracxu+vright)$Calculate an approximation of $int_0^1int_0^1fraclog(xy)xy-1+log(xy)dxdy$Show that $int_0^inftyfracoperatornameLi_s(-x)x^alpha+1mathrm dx=-frac1alpha^sfracpisin(pi alpha)$










1












$begingroup$


I want to solve for the following Integral:
$$int_0^1fraclnxln(1+x)1+xdx$$



I have tried to use:
$$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



and so
$$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I want to solve for the following Integral:
    $$int_0^1fraclnxln(1+x)1+xdx$$



    I have tried to use:
    $$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



    and so
    $$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      1



      $begingroup$


      I want to solve for the following Integral:
      $$int_0^1fraclnxln(1+x)1+xdx$$



      I have tried to use:
      $$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



      and so
      $$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$










      share|cite|improve this question











      $endgroup$




      I want to solve for the following Integral:
      $$int_0^1fraclnxln(1+x)1+xdx$$



      I have tried to use:
      $$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



      and so
      $$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$







      definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 28 at 10:16









      Milten

      3226




      3226










      asked Mar 28 at 9:59









      Reynan HenryReynan Henry

      801




      801




















          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          Hint: without power series: use the substitution $t=ln(1+x)$.






          share|cite|improve this answer









          $endgroup$




















            0












            $begingroup$

            The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






            share|cite|improve this answer









            $endgroup$




















              0












              $begingroup$

              Let
              $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
              Integrating by parts we have
              $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
              The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
              $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165690%2fint-01-frac-lnx-ln1x1xdx%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0












                $begingroup$

                Hint: without power series: use the substitution $t=ln(1+x)$.






                share|cite|improve this answer









                $endgroup$

















                  0












                  $begingroup$

                  Hint: without power series: use the substitution $t=ln(1+x)$.






                  share|cite|improve this answer









                  $endgroup$















                    0












                    0








                    0





                    $begingroup$

                    Hint: without power series: use the substitution $t=ln(1+x)$.






                    share|cite|improve this answer









                    $endgroup$



                    Hint: without power series: use the substitution $t=ln(1+x)$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 28 at 10:04









                    FredFred

                    48.7k11849




                    48.7k11849





















                        0












                        $begingroup$

                        The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






                            share|cite|improve this answer









                            $endgroup$



                            The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 28 at 10:07









                            Kavi Rama MurthyKavi Rama Murthy

                            71.6k53170




                            71.6k53170





















                                0












                                $begingroup$

                                Let
                                $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                Integrating by parts we have
                                $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






                                share|cite|improve this answer









                                $endgroup$

















                                  0












                                  $begingroup$

                                  Let
                                  $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                  Integrating by parts we have
                                  $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                  The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                  $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






                                  share|cite|improve this answer









                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Let
                                    $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                    Integrating by parts we have
                                    $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                    The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                    $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    Let
                                    $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                    Integrating by parts we have
                                    $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                    The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                    $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 28 at 10:16









                                    omegadotomegadot

                                    6,2592829




                                    6,2592829



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165690%2fint-01-frac-lnx-ln1x1xdx%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                        Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                                        Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu