$int_0^1fraclnxln(1+x)1+xdx$ The Next CEO of Stack OverflowWays to prove $ int_0^1 fracln^2(1+x)xdx = fraczeta(3)4$?how to evaluate $int_0^fracpi2frac1sqrtsin xtextdx$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Integral $int_0^infty fracsqrt[3]x+1 - sqrt[3]xsqrtx , mathrm dx$Integral of Bessel function multiplied with sine $int_0^infty J_0(bx) sin(ax) dx$.Definite integral problem of $fracx^nn!$Derivative of improper Integral $f(t)= int_0^1 fracsin(xt)x:dx$Ways to evaluate $int_0^1 int_0^1 frac11-xydxdy = fracpi^26$Asymptotics of a double integral: $ int_0^inftyduint_0^inftydv, frac1(u+v)^2expleft(-fracxu+vright)$Calculate an approximation of $int_0^1int_0^1fraclog(xy)xy-1+log(xy)dxdy$Show that $int_0^inftyfracoperatornameLi_s(-x)x^alpha+1mathrm dx=-frac1alpha^sfracpisin(pi alpha)$
Why was Sir Cadogan fired?
How does a dynamic QR code work?
Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version
Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?
Is a linearly independent set whose span is dense a Schauder basis?
Compilation of a 2d array and a 1d array
Avoiding the "not like other girls" trope?
How seriously should I take size and weight limits of hand luggage?
My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?
How should I connect my cat5 cable to connectors having an orange-green line?
How to implement Comparable so it is consistent with identity-equality
Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?
Free fall ellipse or parabola?
Find the majority element, which appears more than half the time
How exploitable/balanced is this homebrew spell: Spell Permanency?
A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?
How do I secure a TV wall mount?
Mathematica command that allows it to read my intentions
Is it possible to make a 9x9 table fit within the default margins?
How can a day be of 24 hours?
Is it possible to create a QR code using text?
MT "will strike" & LXX "will watch carefully" (Gen 3:15)?
Upgrading From a 9 Speed Sora Derailleur?
Is it okay to majorly distort historical facts while writing a fiction story?
$int_0^1fraclnxln(1+x)1+xdx$
The Next CEO of Stack OverflowWays to prove $ int_0^1 fracln^2(1+x)xdx = fraczeta(3)4$?how to evaluate $int_0^fracpi2frac1sqrtsin xtextdx$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3}$Integral $int_0^infty frac{sqrt[3]x+1 - sqrt[3]xsqrtx , mathrm dx$Integral of Bessel function multiplied with sine $int_0^infty J_0(bx) sin(ax) dx$.Definite integral problem of $fracx^nn!$Derivative of improper Integral $f(t)= int_0^1 fracsin(xt)x:dx$Ways to evaluate $int_0^1 int_0^1 frac11-xydxdy = fracpi^26$Asymptotics of a double integral: $ int_0^inftyduint_0^inftydv, frac1(u+v)^2expleft(-fracxu+vright)$Calculate an approximation of $int_0^1int_0^1fraclog(xy)xy-1+log(xy)dxdy$Show that $int_0^inftyfracoperatornameLi_s(-x)x^alpha+1mathrm dx=-frac1alpha^sfracpisin(pi alpha)$
$begingroup$
I want to solve for the following Integral:
$$int_0^1fraclnxln(1+x)1+xdx$$
I have tried to use:
$$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$
and so
$$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$
definite-integrals
$endgroup$
add a comment |
$begingroup$
I want to solve for the following Integral:
$$int_0^1fraclnxln(1+x)1+xdx$$
I have tried to use:
$$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$
and so
$$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$
definite-integrals
$endgroup$
add a comment |
$begingroup$
I want to solve for the following Integral:
$$int_0^1fraclnxln(1+x)1+xdx$$
I have tried to use:
$$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$
and so
$$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$
definite-integrals
$endgroup$
I want to solve for the following Integral:
$$int_0^1fraclnxln(1+x)1+xdx$$
I have tried to use:
$$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$
and so
$$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$
definite-integrals
definite-integrals
edited Mar 28 at 10:16
Milten
3226
3226
asked Mar 28 at 9:59
Reynan HenryReynan Henry
801
801
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: without power series: use the substitution $t=ln(1+x)$.
$endgroup$
add a comment |
$begingroup$
The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.
$endgroup$
add a comment |
$begingroup$
Let
$$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
Integrating by parts we have
$$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
$$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165690%2fint-01-frac-lnx-ln1x1xdx%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: without power series: use the substitution $t=ln(1+x)$.
$endgroup$
add a comment |
$begingroup$
Hint: without power series: use the substitution $t=ln(1+x)$.
$endgroup$
add a comment |
$begingroup$
Hint: without power series: use the substitution $t=ln(1+x)$.
$endgroup$
Hint: without power series: use the substitution $t=ln(1+x)$.
answered Mar 28 at 10:04
FredFred
48.7k11849
48.7k11849
add a comment |
add a comment |
$begingroup$
The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.
$endgroup$
add a comment |
$begingroup$
The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.
$endgroup$
add a comment |
$begingroup$
The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.
$endgroup$
The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.
answered Mar 28 at 10:07
Kavi Rama MurthyKavi Rama Murthy
71.6k53170
71.6k53170
add a comment |
add a comment |
$begingroup$
Let
$$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
Integrating by parts we have
$$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
$$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$
$endgroup$
add a comment |
$begingroup$
Let
$$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
Integrating by parts we have
$$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
$$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$
$endgroup$
add a comment |
$begingroup$
Let
$$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
Integrating by parts we have
$$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
$$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$
$endgroup$
Let
$$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
Integrating by parts we have
$$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
$$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$
answered Mar 28 at 10:16
omegadotomegadot
6,2592829
6,2592829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165690%2fint-01-frac-lnx-ln1x1xdx%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown