Function with uniformly but non absolutely convergent Fourier series The Next CEO of Stack OverflowPointwise but not uniform convergence of a Fourier seriesA function whose derivatives always have a convergent fourier seriesProve that the Fourier series of $dfrac1f$ is absolutely convergent.Absolutely convergent but not convergentAbsolute convergence of fourier seriesAbsolutely but not uniformly convergentconditionally convergent but not absolutely convergent seriesConvergent Fourier series of continuous functionevery absolutely convergence in interval of convergence is uniformlyContinuous periodic function with Fourier series behaving like $1/n$?

Can you teleport closer to a creature you are Frightened of?

How to show a landlord what we have in savings?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Why can't we say "I have been having a dog"?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Man transported from Alternate World into ours by a Neutrino Detector

What difference does it make matching a word with/without a trailing whitespace?

How does a dynamic QR code work?

Read/write a pipe-delimited file line by line with some simple text manipulation

How to pronounce fünf in 45

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version

Creating a script with console commands

Are British MPs missing the point, with these 'Indicative Votes'?

Ising model simulation

Is it possible to make a 9x9 table fit within the default margins?

Does Germany produce more waste than the US?

Why did Batya get tzaraat?

pgfplots: How to draw a tangent graph below two others?

How do I secure a TV wall mount?

Calculate the Mean mean of two numbers

Car headlights in a world without electricity



Function with uniformly but non absolutely convergent Fourier series



The Next CEO of Stack OverflowPointwise but not uniform convergence of a Fourier seriesA function whose derivatives always have a convergent fourier seriesProve that the Fourier series of $dfrac1f$ is absolutely convergent.Absolutely convergent but not convergentAbsolute convergence of fourier seriesAbsolutely but not uniformly convergentconditionally convergent but not absolutely convergent seriesConvergent Fourier series of continuous functionevery absolutely convergence in interval of convergence is uniformlyContinuous periodic function with Fourier series behaving like $1/n$?










0












$begingroup$


Is there an example of a periodic continuous function on $mathbbR$ such that its Fourier series is uniformly convergent (to $f$), but it is not absolutely convergent ?










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    Is there an example of a periodic continuous function on $mathbbR$ such that its Fourier series is uniformly convergent (to $f$), but it is not absolutely convergent ?










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      Is there an example of a periodic continuous function on $mathbbR$ such that its Fourier series is uniformly convergent (to $f$), but it is not absolutely convergent ?










      share|cite|improve this question









      $endgroup$




      Is there an example of a periodic continuous function on $mathbbR$ such that its Fourier series is uniformly convergent (to $f$), but it is not absolutely convergent ?







      real-analysis sequences-and-series fourier-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 28 at 9:19









      Phil-WPhil-W

      32818




      32818




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          $sum frac sin (nx) nlog , n$ is such a series. The proof is not obvious but it is a well known result. See Edwards, Fourier Series. p. 166.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
            $endgroup$
            – Conrad
            Mar 28 at 12:31











          • $begingroup$
            Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
            $endgroup$
            – Conrad
            Mar 28 at 12:47











          • $begingroup$
            @Conrad You are right.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 13:00










          • $begingroup$
            The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
            $endgroup$
            – Conrad
            Mar 28 at 14:12











          • $begingroup$
            @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 23:21












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165664%2ffunction-with-uniformly-but-non-absolutely-convergent-fourier-series%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          $sum frac sin (nx) nlog , n$ is such a series. The proof is not obvious but it is a well known result. See Edwards, Fourier Series. p. 166.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
            $endgroup$
            – Conrad
            Mar 28 at 12:31











          • $begingroup$
            Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
            $endgroup$
            – Conrad
            Mar 28 at 12:47











          • $begingroup$
            @Conrad You are right.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 13:00










          • $begingroup$
            The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
            $endgroup$
            – Conrad
            Mar 28 at 14:12











          • $begingroup$
            @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 23:21
















          0












          $begingroup$

          $sum frac sin (nx) nlog , n$ is such a series. The proof is not obvious but it is a well known result. See Edwards, Fourier Series. p. 166.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
            $endgroup$
            – Conrad
            Mar 28 at 12:31











          • $begingroup$
            Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
            $endgroup$
            – Conrad
            Mar 28 at 12:47











          • $begingroup$
            @Conrad You are right.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 13:00










          • $begingroup$
            The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
            $endgroup$
            – Conrad
            Mar 28 at 14:12











          • $begingroup$
            @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 23:21














          0












          0








          0





          $begingroup$

          $sum frac sin (nx) nlog , n$ is such a series. The proof is not obvious but it is a well known result. See Edwards, Fourier Series. p. 166.






          share|cite|improve this answer









          $endgroup$



          $sum frac sin (nx) nlog , n$ is such a series. The proof is not obvious but it is a well known result. See Edwards, Fourier Series. p. 166.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 28 at 9:25









          Kavi Rama MurthyKavi Rama Murthy

          71.5k53170




          71.5k53170











          • $begingroup$
            If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
            $endgroup$
            – Conrad
            Mar 28 at 12:31











          • $begingroup$
            Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
            $endgroup$
            – Conrad
            Mar 28 at 12:47











          • $begingroup$
            @Conrad You are right.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 13:00










          • $begingroup$
            The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
            $endgroup$
            – Conrad
            Mar 28 at 14:12











          • $begingroup$
            @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 23:21

















          • $begingroup$
            If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
            $endgroup$
            – Conrad
            Mar 28 at 12:31











          • $begingroup$
            Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
            $endgroup$
            – Conrad
            Mar 28 at 12:47











          • $begingroup$
            @Conrad You are right.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 13:00










          • $begingroup$
            The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
            $endgroup$
            – Conrad
            Mar 28 at 14:12











          • $begingroup$
            @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
            $endgroup$
            – Kavi Rama Murthy
            Mar 28 at 23:21
















          $begingroup$
          If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
          $endgroup$
          – Conrad
          Mar 28 at 12:31





          $begingroup$
          If you assume the well-known fact that $sum frac sin (nx) n$ has partial sums that are uniformly bounded, the proof is immediate with a summation by parts. With oscillating coefficients we can construct examples for which $a_n$ ~ $n^-a, a > frac12$ and even $a_n$ ~ $n^-frac12(log n)^-1-b, b>0$ which is best we can do since by Plancherel we know that $Sigma^2 < infty$ when the Fourier series converges uniformly, so in particular we get examples of continuos functions with Fourier series for which $Sigma = infty$ for any $b>0$
          $endgroup$
          – Conrad
          Mar 28 at 12:31













          $begingroup$
          Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
          $endgroup$
          – Conrad
          Mar 28 at 12:47





          $begingroup$
          Use $Sigmafrac 1 nlog , n = infty$ and $x=fracpi2$ and the absolute sum is the odd part of $Sigmafrac 1 nlog , n$
          $endgroup$
          – Conrad
          Mar 28 at 12:47













          $begingroup$
          @Conrad You are right.
          $endgroup$
          – Kavi Rama Murthy
          Mar 28 at 13:00




          $begingroup$
          @Conrad You are right.
          $endgroup$
          – Kavi Rama Murthy
          Mar 28 at 13:00












          $begingroup$
          The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
          $endgroup$
          – Conrad
          Mar 28 at 14:12





          $begingroup$
          The tricky part is uniform convergence near $0$ and for that some subtle result or method is needed since the result is not true for cosine series where full period interval pointwise, uniform and absolute convergence are obviously equivalent when the coefficients are positive
          $endgroup$
          – Conrad
          Mar 28 at 14:12













          $begingroup$
          @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
          $endgroup$
          – Kavi Rama Murthy
          Mar 28 at 23:21





          $begingroup$
          @Conrad In the book I have referred to it is shown that if $(a_n)$ decreases to $0$ then $sum a_n sin(nx)$ is uniformly convergent iff $na_n to 0$.
          $endgroup$
          – Kavi Rama Murthy
          Mar 28 at 23:21


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165664%2ffunction-with-uniformly-but-non-absolutely-convergent-fourier-series%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu