Product between a power series and polynomial of finite degree The Next CEO of Stack OverflowWhy does $textdisc f=textres(f,f')$?GCD between a polynomial with terms of even degree and a polynomial with terms of odd degree.Find $prodlimits=(alpha_1+1)(alpha_2+1)…(alpha_n+1)$ where $alpha_i$ are complex roots of a complex polynomialNumber of possible roots for a finite degree polynomial.Show that the polynomials $1$,$ x$, $x^2$, …, $x^n$ form a linearly independent set in $P_n$.Determinant of $N times N$ matrixSlowly changing polynomial equationsComplex analysis question regarding polynomial and maximum modulus principleFinding polynomials from huge sets of pointsA sequence of full rank matrices $A_i in mathbbR^mtimes n$ such that $A_i rightarrow A$ in $|cdot|_2$

Calculate the Mean mean of two numbers

Does the Idaho Potato Commission associate potato skins with healthy eating?

Could you use a laser beam as a modulated carrier wave for radio signal?

pgfplots: How to draw a tangent graph below two others?

What are the unusually-enlarged wing sections on this P-38 Lightning?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Direct Implications Between USA and UK in Event of No-Deal Brexit

Ising model simulation

Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?

How to pronounce fünf in 45

What did the word "leisure" mean in late 18th Century usage?

Is it reasonable to ask other researchers to send me their previous grant applications?

That's an odd coin - I wonder why

How does a dynamic QR code work?

"Eavesdropping" vs "Listen in on"

How can a day be of 24 hours?

Why was Sir Cadogan fired?

Prodigo = pro + ago?

How to show a landlord what we have in savings?

Masking layers by a vector polygon layer in QGIS

Find the majority element, which appears more than half the time

Could a dragon use its wings to swim?

Is it OK to decorate a log book cover?

Creating a script with console commands



Product between a power series and polynomial of finite degree



The Next CEO of Stack OverflowWhy does $textdisc f=textres(f,f')$?GCD between a polynomial with terms of even degree and a polynomial with terms of odd degree.Find $prodlimits=(alpha_1+1)(alpha_2+1)…(alpha_n+1)$ where $alpha_i$ are complex roots of a complex polynomialNumber of possible roots for a finite degree polynomial.Show that the polynomials $1$,$ x$, $x^2$, …, $x^n$ form a linearly independent set in $P_n$.Determinant of $N times N$ matrixSlowly changing polynomial equationsComplex analysis question regarding polynomial and maximum modulus principleFinding polynomials from huge sets of pointsA sequence of full rank matrices $A_i in mathbbR^mtimes n$ such that $A_i rightarrow A$ in $|cdot|_2$










3












$begingroup$


Consider the matrix $A_n times n$ with its characteristic polynomial, being $a(z)=det(zI-A)$ of degree $n$:



$ a(z)= a_nz^-n + ... + a_1z^-1 +a_0 $



Consider now the product



$P(z)=a(z)(zI-A)^-1$.



My goal is to show that $P(z)$ is a polynomial in $z$ of degree $n$ $P(z)= P_nz^-n+ dots P_1z^-1$ with coefficients



$[P_n dots P_1]= [A^n-1 A^n-2 ... I]beginbmatrix
a_0 & 0 & 0 & ... & 0\
a_1 & a_0 & 0 & ... & 0\
vdots & & ddots & & vdots\
vdots & & & ddots & vdots \
a_n-1 & dots & & & a_0\
endbmatrix$
.



It is not clear to me how the coefficients $A_i$ with $igeq n$ are canceled out.



Here few steps to prove it: first I noticed that $(zI-A)^-1$ is the power series expansion



$frac1zI-A = z^-1frac1I-Az^-1 = z^-1sum_n=0^inftyBig(Az^-1Big)^n = z^-1[I+Az^-1+A^2z^-2+...]$



Then, the product is



$P(z)= a(z)z^-1[I+Az^-1+A^2z^-2+...]= [a_nz^-n + ... +a_0][z^-1+Az^-2+A^2z^-3+...]$



that can be rewritten as



$[P_n dots P_1]beginbmatrix z^-n\ vdots \ z^-1endbmatrix= [a_n dots a_0]beginbmatrix z^-n\ vdots \z^0endbmatrix[dots A^n-1 dots I]beginbmatrix vdots \ z^-n \ vdots \ z^-1endbmatrix$



And now I am stuck in this step and i don't know how to proceed to get the desired representation. Should I simply discard the coefficients with index $igeq n$ just because the $P(z)$ is of degree $n$?



Thanks for any help and suggestions










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $A$? Is there some relationship between $A$ and $a$? For example, do you have that $a(A)=0$, like if $a$ were the minimal or characteristic polynomial of $A$?
    $endgroup$
    – jgon
    Mar 12 at 15:49










  • $begingroup$
    $A$ is a matrix and $a(z)$ is its characteristic polynomial, being $a(z)=det(zI-A)$. I will put the clarification in the problem description.
    $endgroup$
    – Betelgeuse
    Mar 12 at 15:52






  • 1




    $begingroup$
    Ah, then that should do it. (I'm still a little confused by the usage of negative powers everywhere, so I'm not going to translate this to negative powers, but...) Use the fact that $a(A)=0$, or in other words, $sum_i=0^n a_iA^i =0$. This gives you the relation you need to make the other parts cancel out.
    $endgroup$
    – jgon
    Mar 12 at 16:00















3












$begingroup$


Consider the matrix $A_n times n$ with its characteristic polynomial, being $a(z)=det(zI-A)$ of degree $n$:



$ a(z)= a_nz^-n + ... + a_1z^-1 +a_0 $



Consider now the product



$P(z)=a(z)(zI-A)^-1$.



My goal is to show that $P(z)$ is a polynomial in $z$ of degree $n$ $P(z)= P_nz^-n+ dots P_1z^-1$ with coefficients



$[P_n dots P_1]= [A^n-1 A^n-2 ... I]beginbmatrix
a_0 & 0 & 0 & ... & 0\
a_1 & a_0 & 0 & ... & 0\
vdots & & ddots & & vdots\
vdots & & & ddots & vdots \
a_n-1 & dots & & & a_0\
endbmatrix$
.



It is not clear to me how the coefficients $A_i$ with $igeq n$ are canceled out.



Here few steps to prove it: first I noticed that $(zI-A)^-1$ is the power series expansion



$frac1zI-A = z^-1frac1I-Az^-1 = z^-1sum_n=0^inftyBig(Az^-1Big)^n = z^-1[I+Az^-1+A^2z^-2+...]$



Then, the product is



$P(z)= a(z)z^-1[I+Az^-1+A^2z^-2+...]= [a_nz^-n + ... +a_0][z^-1+Az^-2+A^2z^-3+...]$



that can be rewritten as



$[P_n dots P_1]beginbmatrix z^-n\ vdots \ z^-1endbmatrix= [a_n dots a_0]beginbmatrix z^-n\ vdots \z^0endbmatrix[dots A^n-1 dots I]beginbmatrix vdots \ z^-n \ vdots \ z^-1endbmatrix$



And now I am stuck in this step and i don't know how to proceed to get the desired representation. Should I simply discard the coefficients with index $igeq n$ just because the $P(z)$ is of degree $n$?



Thanks for any help and suggestions










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What is $A$? Is there some relationship between $A$ and $a$? For example, do you have that $a(A)=0$, like if $a$ were the minimal or characteristic polynomial of $A$?
    $endgroup$
    – jgon
    Mar 12 at 15:49










  • $begingroup$
    $A$ is a matrix and $a(z)$ is its characteristic polynomial, being $a(z)=det(zI-A)$. I will put the clarification in the problem description.
    $endgroup$
    – Betelgeuse
    Mar 12 at 15:52






  • 1




    $begingroup$
    Ah, then that should do it. (I'm still a little confused by the usage of negative powers everywhere, so I'm not going to translate this to negative powers, but...) Use the fact that $a(A)=0$, or in other words, $sum_i=0^n a_iA^i =0$. This gives you the relation you need to make the other parts cancel out.
    $endgroup$
    – jgon
    Mar 12 at 16:00













3












3








3





$begingroup$


Consider the matrix $A_n times n$ with its characteristic polynomial, being $a(z)=det(zI-A)$ of degree $n$:



$ a(z)= a_nz^-n + ... + a_1z^-1 +a_0 $



Consider now the product



$P(z)=a(z)(zI-A)^-1$.



My goal is to show that $P(z)$ is a polynomial in $z$ of degree $n$ $P(z)= P_nz^-n+ dots P_1z^-1$ with coefficients



$[P_n dots P_1]= [A^n-1 A^n-2 ... I]beginbmatrix
a_0 & 0 & 0 & ... & 0\
a_1 & a_0 & 0 & ... & 0\
vdots & & ddots & & vdots\
vdots & & & ddots & vdots \
a_n-1 & dots & & & a_0\
endbmatrix$
.



It is not clear to me how the coefficients $A_i$ with $igeq n$ are canceled out.



Here few steps to prove it: first I noticed that $(zI-A)^-1$ is the power series expansion



$frac1zI-A = z^-1frac1I-Az^-1 = z^-1sum_n=0^inftyBig(Az^-1Big)^n = z^-1[I+Az^-1+A^2z^-2+...]$



Then, the product is



$P(z)= a(z)z^-1[I+Az^-1+A^2z^-2+...]= [a_nz^-n + ... +a_0][z^-1+Az^-2+A^2z^-3+...]$



that can be rewritten as



$[P_n dots P_1]beginbmatrix z^-n\ vdots \ z^-1endbmatrix= [a_n dots a_0]beginbmatrix z^-n\ vdots \z^0endbmatrix[dots A^n-1 dots I]beginbmatrix vdots \ z^-n \ vdots \ z^-1endbmatrix$



And now I am stuck in this step and i don't know how to proceed to get the desired representation. Should I simply discard the coefficients with index $igeq n$ just because the $P(z)$ is of degree $n$?



Thanks for any help and suggestions










share|cite|improve this question











$endgroup$




Consider the matrix $A_n times n$ with its characteristic polynomial, being $a(z)=det(zI-A)$ of degree $n$:



$ a(z)= a_nz^-n + ... + a_1z^-1 +a_0 $



Consider now the product



$P(z)=a(z)(zI-A)^-1$.



My goal is to show that $P(z)$ is a polynomial in $z$ of degree $n$ $P(z)= P_nz^-n+ dots P_1z^-1$ with coefficients



$[P_n dots P_1]= [A^n-1 A^n-2 ... I]beginbmatrix
a_0 & 0 & 0 & ... & 0\
a_1 & a_0 & 0 & ... & 0\
vdots & & ddots & & vdots\
vdots & & & ddots & vdots \
a_n-1 & dots & & & a_0\
endbmatrix$
.



It is not clear to me how the coefficients $A_i$ with $igeq n$ are canceled out.



Here few steps to prove it: first I noticed that $(zI-A)^-1$ is the power series expansion



$frac1zI-A = z^-1frac1I-Az^-1 = z^-1sum_n=0^inftyBig(Az^-1Big)^n = z^-1[I+Az^-1+A^2z^-2+...]$



Then, the product is



$P(z)= a(z)z^-1[I+Az^-1+A^2z^-2+...]= [a_nz^-n + ... +a_0][z^-1+Az^-2+A^2z^-3+...]$



that can be rewritten as



$[P_n dots P_1]beginbmatrix z^-n\ vdots \ z^-1endbmatrix= [a_n dots a_0]beginbmatrix z^-n\ vdots \z^0endbmatrix[dots A^n-1 dots I]beginbmatrix vdots \ z^-n \ vdots \ z^-1endbmatrix$



And now I am stuck in this step and i don't know how to proceed to get the desired representation. Should I simply discard the coefficients with index $igeq n$ just because the $P(z)$ is of degree $n$?



Thanks for any help and suggestions







sequences-and-series polynomials power-series generating-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 12 at 22:01







Betelgeuse

















asked Mar 12 at 14:20









BetelgeuseBetelgeuse

1497




1497







  • 1




    $begingroup$
    What is $A$? Is there some relationship between $A$ and $a$? For example, do you have that $a(A)=0$, like if $a$ were the minimal or characteristic polynomial of $A$?
    $endgroup$
    – jgon
    Mar 12 at 15:49










  • $begingroup$
    $A$ is a matrix and $a(z)$ is its characteristic polynomial, being $a(z)=det(zI-A)$. I will put the clarification in the problem description.
    $endgroup$
    – Betelgeuse
    Mar 12 at 15:52






  • 1




    $begingroup$
    Ah, then that should do it. (I'm still a little confused by the usage of negative powers everywhere, so I'm not going to translate this to negative powers, but...) Use the fact that $a(A)=0$, or in other words, $sum_i=0^n a_iA^i =0$. This gives you the relation you need to make the other parts cancel out.
    $endgroup$
    – jgon
    Mar 12 at 16:00












  • 1




    $begingroup$
    What is $A$? Is there some relationship between $A$ and $a$? For example, do you have that $a(A)=0$, like if $a$ were the minimal or characteristic polynomial of $A$?
    $endgroup$
    – jgon
    Mar 12 at 15:49










  • $begingroup$
    $A$ is a matrix and $a(z)$ is its characteristic polynomial, being $a(z)=det(zI-A)$. I will put the clarification in the problem description.
    $endgroup$
    – Betelgeuse
    Mar 12 at 15:52






  • 1




    $begingroup$
    Ah, then that should do it. (I'm still a little confused by the usage of negative powers everywhere, so I'm not going to translate this to negative powers, but...) Use the fact that $a(A)=0$, or in other words, $sum_i=0^n a_iA^i =0$. This gives you the relation you need to make the other parts cancel out.
    $endgroup$
    – jgon
    Mar 12 at 16:00







1




1




$begingroup$
What is $A$? Is there some relationship between $A$ and $a$? For example, do you have that $a(A)=0$, like if $a$ were the minimal or characteristic polynomial of $A$?
$endgroup$
– jgon
Mar 12 at 15:49




$begingroup$
What is $A$? Is there some relationship between $A$ and $a$? For example, do you have that $a(A)=0$, like if $a$ were the minimal or characteristic polynomial of $A$?
$endgroup$
– jgon
Mar 12 at 15:49












$begingroup$
$A$ is a matrix and $a(z)$ is its characteristic polynomial, being $a(z)=det(zI-A)$. I will put the clarification in the problem description.
$endgroup$
– Betelgeuse
Mar 12 at 15:52




$begingroup$
$A$ is a matrix and $a(z)$ is its characteristic polynomial, being $a(z)=det(zI-A)$. I will put the clarification in the problem description.
$endgroup$
– Betelgeuse
Mar 12 at 15:52




1




1




$begingroup$
Ah, then that should do it. (I'm still a little confused by the usage of negative powers everywhere, so I'm not going to translate this to negative powers, but...) Use the fact that $a(A)=0$, or in other words, $sum_i=0^n a_iA^i =0$. This gives you the relation you need to make the other parts cancel out.
$endgroup$
– jgon
Mar 12 at 16:00




$begingroup$
Ah, then that should do it. (I'm still a little confused by the usage of negative powers everywhere, so I'm not going to translate this to negative powers, but...) Use the fact that $a(A)=0$, or in other words, $sum_i=0^n a_iA^i =0$. This gives you the relation you need to make the other parts cancel out.
$endgroup$
– jgon
Mar 12 at 16:00










2 Answers
2






active

oldest

votes


















0












$begingroup$

For an adjoint(or adjugate) matrix $textadj(zI-A)$, we have that
$$
(zI-A)textadj(zI-A)=det(zI-A)I=a(z)I,
$$
thus $textadj(zI-A)=a(z)(zI-A)^-1$ for $z$ not in the spectrum of $A$, i.e. $a(z)ne 0$. On the other hand, we can see from the definition of adjoint matrix that every entry of $textadj(zI-A)$ is a polynomial in $z$ of degree at most $n-1$. Hence there is a sequence of matrices such that
$$
a(z)(zI-A)^-1=A_0+A_1z+cdots +z^n-1A_n-1.
$$
Now, we can match each coefficient of $z^j$ in
$$beginalign*
a(z)I&=a_0I+za_1I+cdots +z^n a_nI
\&=(zI-A)(A_0+A_1z+cdots + z^n-1A_n-1)
\&=-AA_0 +z(A_0-AA_1)+z^2(A_1-AA_2)+cdots+z^nA_n-1.
endalign*$$
to obtain
$$
A_0=-a_0A^-1\ A_1=-a_0A^-2-a_1A^-1\ vdots \ A_n-2=-a_0A^-n+1-cdots -a_n-2A^-1\A_n-1=-a_0A^-n-cdots -a_n-2A^-2-a_n-1A^-1=a_nI.
$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    all the row and column transformation we used to diagonal a matrix is elementary and invertible!
    so the condition of scalar matrix is its character vector be unique, then multiple your analytic function with $A,A^2,A^3,……$ it is sufficient to get the unique condition, such that every coefficient equals zero. therefore you can represent your diagonal procedure as a multiple between power matrix with one column and a power of scalar.



    is it helpful? thank you!






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145138%2fproduct-between-a-power-series-and-polynomial-of-finite-degree%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      For an adjoint(or adjugate) matrix $textadj(zI-A)$, we have that
      $$
      (zI-A)textadj(zI-A)=det(zI-A)I=a(z)I,
      $$
      thus $textadj(zI-A)=a(z)(zI-A)^-1$ for $z$ not in the spectrum of $A$, i.e. $a(z)ne 0$. On the other hand, we can see from the definition of adjoint matrix that every entry of $textadj(zI-A)$ is a polynomial in $z$ of degree at most $n-1$. Hence there is a sequence of matrices such that
      $$
      a(z)(zI-A)^-1=A_0+A_1z+cdots +z^n-1A_n-1.
      $$
      Now, we can match each coefficient of $z^j$ in
      $$beginalign*
      a(z)I&=a_0I+za_1I+cdots +z^n a_nI
      \&=(zI-A)(A_0+A_1z+cdots + z^n-1A_n-1)
      \&=-AA_0 +z(A_0-AA_1)+z^2(A_1-AA_2)+cdots+z^nA_n-1.
      endalign*$$
      to obtain
      $$
      A_0=-a_0A^-1\ A_1=-a_0A^-2-a_1A^-1\ vdots \ A_n-2=-a_0A^-n+1-cdots -a_n-2A^-1\A_n-1=-a_0A^-n-cdots -a_n-2A^-2-a_n-1A^-1=a_nI.
      $$






      share|cite|improve this answer









      $endgroup$

















        0












        $begingroup$

        For an adjoint(or adjugate) matrix $textadj(zI-A)$, we have that
        $$
        (zI-A)textadj(zI-A)=det(zI-A)I=a(z)I,
        $$
        thus $textadj(zI-A)=a(z)(zI-A)^-1$ for $z$ not in the spectrum of $A$, i.e. $a(z)ne 0$. On the other hand, we can see from the definition of adjoint matrix that every entry of $textadj(zI-A)$ is a polynomial in $z$ of degree at most $n-1$. Hence there is a sequence of matrices such that
        $$
        a(z)(zI-A)^-1=A_0+A_1z+cdots +z^n-1A_n-1.
        $$
        Now, we can match each coefficient of $z^j$ in
        $$beginalign*
        a(z)I&=a_0I+za_1I+cdots +z^n a_nI
        \&=(zI-A)(A_0+A_1z+cdots + z^n-1A_n-1)
        \&=-AA_0 +z(A_0-AA_1)+z^2(A_1-AA_2)+cdots+z^nA_n-1.
        endalign*$$
        to obtain
        $$
        A_0=-a_0A^-1\ A_1=-a_0A^-2-a_1A^-1\ vdots \ A_n-2=-a_0A^-n+1-cdots -a_n-2A^-1\A_n-1=-a_0A^-n-cdots -a_n-2A^-2-a_n-1A^-1=a_nI.
        $$






        share|cite|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$

          For an adjoint(or adjugate) matrix $textadj(zI-A)$, we have that
          $$
          (zI-A)textadj(zI-A)=det(zI-A)I=a(z)I,
          $$
          thus $textadj(zI-A)=a(z)(zI-A)^-1$ for $z$ not in the spectrum of $A$, i.e. $a(z)ne 0$. On the other hand, we can see from the definition of adjoint matrix that every entry of $textadj(zI-A)$ is a polynomial in $z$ of degree at most $n-1$. Hence there is a sequence of matrices such that
          $$
          a(z)(zI-A)^-1=A_0+A_1z+cdots +z^n-1A_n-1.
          $$
          Now, we can match each coefficient of $z^j$ in
          $$beginalign*
          a(z)I&=a_0I+za_1I+cdots +z^n a_nI
          \&=(zI-A)(A_0+A_1z+cdots + z^n-1A_n-1)
          \&=-AA_0 +z(A_0-AA_1)+z^2(A_1-AA_2)+cdots+z^nA_n-1.
          endalign*$$
          to obtain
          $$
          A_0=-a_0A^-1\ A_1=-a_0A^-2-a_1A^-1\ vdots \ A_n-2=-a_0A^-n+1-cdots -a_n-2A^-1\A_n-1=-a_0A^-n-cdots -a_n-2A^-2-a_n-1A^-1=a_nI.
          $$






          share|cite|improve this answer









          $endgroup$



          For an adjoint(or adjugate) matrix $textadj(zI-A)$, we have that
          $$
          (zI-A)textadj(zI-A)=det(zI-A)I=a(z)I,
          $$
          thus $textadj(zI-A)=a(z)(zI-A)^-1$ for $z$ not in the spectrum of $A$, i.e. $a(z)ne 0$. On the other hand, we can see from the definition of adjoint matrix that every entry of $textadj(zI-A)$ is a polynomial in $z$ of degree at most $n-1$. Hence there is a sequence of matrices such that
          $$
          a(z)(zI-A)^-1=A_0+A_1z+cdots +z^n-1A_n-1.
          $$
          Now, we can match each coefficient of $z^j$ in
          $$beginalign*
          a(z)I&=a_0I+za_1I+cdots +z^n a_nI
          \&=(zI-A)(A_0+A_1z+cdots + z^n-1A_n-1)
          \&=-AA_0 +z(A_0-AA_1)+z^2(A_1-AA_2)+cdots+z^nA_n-1.
          endalign*$$
          to obtain
          $$
          A_0=-a_0A^-1\ A_1=-a_0A^-2-a_1A^-1\ vdots \ A_n-2=-a_0A^-n+1-cdots -a_n-2A^-1\A_n-1=-a_0A^-n-cdots -a_n-2A^-2-a_n-1A^-1=a_nI.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 12 at 16:18









          SongSong

          18.5k21651




          18.5k21651





















              0












              $begingroup$

              all the row and column transformation we used to diagonal a matrix is elementary and invertible!
              so the condition of scalar matrix is its character vector be unique, then multiple your analytic function with $A,A^2,A^3,……$ it is sufficient to get the unique condition, such that every coefficient equals zero. therefore you can represent your diagonal procedure as a multiple between power matrix with one column and a power of scalar.



              is it helpful? thank you!






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                all the row and column transformation we used to diagonal a matrix is elementary and invertible!
                so the condition of scalar matrix is its character vector be unique, then multiple your analytic function with $A,A^2,A^3,……$ it is sufficient to get the unique condition, such that every coefficient equals zero. therefore you can represent your diagonal procedure as a multiple between power matrix with one column and a power of scalar.



                is it helpful? thank you!






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  all the row and column transformation we used to diagonal a matrix is elementary and invertible!
                  so the condition of scalar matrix is its character vector be unique, then multiple your analytic function with $A,A^2,A^3,……$ it is sufficient to get the unique condition, such that every coefficient equals zero. therefore you can represent your diagonal procedure as a multiple between power matrix with one column and a power of scalar.



                  is it helpful? thank you!






                  share|cite|improve this answer









                  $endgroup$



                  all the row and column transformation we used to diagonal a matrix is elementary and invertible!
                  so the condition of scalar matrix is its character vector be unique, then multiple your analytic function with $A,A^2,A^3,……$ it is sufficient to get the unique condition, such that every coefficient equals zero. therefore you can represent your diagonal procedure as a multiple between power matrix with one column and a power of scalar.



                  is it helpful? thank you!







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 28 at 8:49







                  user653679


































                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145138%2fproduct-between-a-power-series-and-polynomial-of-finite-degree%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu