Number of cliques in a graph and intersection number The Next CEO of Stack OverflowMaximal and Maximum CliquesSelection from cliques of a graph in polynomial timeExample of graph with specific $chi (G)$, $omega (G)$, $beta (G)$If a graph G is the union of $n$ cliques of size $n$ no two of which share more than one vertex, then $chi_f(G)=n$. $omega(G)=n$How to optimize the clique problem when permuting a known graph?Graph Theory Connectivity ProofLet $G$ be a graph and $omega$ be its clique numberProve that for all $nge1$, a complete graph of n vertices contains k-cliques for k $in 1,…,n$Graph theoretic name for minimal subgraph that connects to full graphCounting the number of undirected simple and connected graphs

What day is it again?

Find a path from s to t using as few red nodes as possible

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

That's an odd coin - I wonder why

logical reads on global temp table, but not on session-level temp table

How do I secure a TV wall mount?

Does int main() need a declaration on C++?

Why does freezing point matter when picking cooler ice packs?

Find the majority element, which appears more than half the time

Finitely generated matrix groups whose eigenvalues are all algebraic

Creating a script with console commands

Is it reasonable to ask other researchers to send me their previous grant applications?

Direct Implications Between USA and UK in Event of No-Deal Brexit

Prodigo = pro + ago?

Can Sri Krishna be called 'a person'?

Car headlights in a world without electricity

How does a dynamic QR code work?

Which acid/base does a strong base/acid react when added to a buffer solution?

What difference does it make matching a word with/without a trailing whitespace?

Upgrading From a 9 Speed Sora Derailleur?

Is a linearly independent set whose span is dense a Schauder basis?

Another proof that dividing by 0 does not exist -- is it right?

Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?

How can I separate the number from the unit in argument?



Number of cliques in a graph and intersection number



The Next CEO of Stack OverflowMaximal and Maximum CliquesSelection from cliques of a graph in polynomial timeExample of graph with specific $chi (G)$, $omega (G)$, $beta (G)$If a graph G is the union of $n$ cliques of size $n$ no two of which share more than one vertex, then $chi_f(G)=n$. $omega(G)=n$How to optimize the clique problem when permuting a known graph?Graph Theory Connectivity ProofLet $G$ be a graph and $omega$ be its clique numberProve that for all $nge1$, a complete graph of n vertices contains k-cliques for k $in 1,…,n$Graph theoretic name for minimal subgraph that connects to full graphCounting the number of undirected simple and connected graphs










3












$begingroup$


Define the number of cliques in a graph $G$ to be $c(G)$ and the intersection number of the graph to be $omega(G)$. I have been tasked to comment on the inequality between $c(G)$ and $omega(G)$. I believe that $c(G)geq omega(G)$. Consider $S_v$ to be the set corresponding to the vertex $v$. Define $C_i=v lvert iin S_v$ for each $iin S$. Now $C_i$ is a complete subgraph of $G$ and
also if $C_i=C_j$ then we can remove $j$ and everything would remain same, thus getting intersection number less than $omega(G)$ which is impossible.



I think the proof is correct, but I am a little unsure if I can indeed remove $j$, but to complete my task I must give an example where $c(G)>omega(G)$, I can't seem to find it. Some help would be appreciated. Thanks.










share|cite|improve this question









$endgroup$











  • $begingroup$
    did you ever find an answer to this?
    $endgroup$
    – rachelhoward
    Apr 26 '18 at 23:22















3












$begingroup$


Define the number of cliques in a graph $G$ to be $c(G)$ and the intersection number of the graph to be $omega(G)$. I have been tasked to comment on the inequality between $c(G)$ and $omega(G)$. I believe that $c(G)geq omega(G)$. Consider $S_v$ to be the set corresponding to the vertex $v$. Define $C_i=v lvert iin S_v$ for each $iin S$. Now $C_i$ is a complete subgraph of $G$ and
also if $C_i=C_j$ then we can remove $j$ and everything would remain same, thus getting intersection number less than $omega(G)$ which is impossible.



I think the proof is correct, but I am a little unsure if I can indeed remove $j$, but to complete my task I must give an example where $c(G)>omega(G)$, I can't seem to find it. Some help would be appreciated. Thanks.










share|cite|improve this question









$endgroup$











  • $begingroup$
    did you ever find an answer to this?
    $endgroup$
    – rachelhoward
    Apr 26 '18 at 23:22













3












3








3


1



$begingroup$


Define the number of cliques in a graph $G$ to be $c(G)$ and the intersection number of the graph to be $omega(G)$. I have been tasked to comment on the inequality between $c(G)$ and $omega(G)$. I believe that $c(G)geq omega(G)$. Consider $S_v$ to be the set corresponding to the vertex $v$. Define $C_i=v lvert iin S_v$ for each $iin S$. Now $C_i$ is a complete subgraph of $G$ and
also if $C_i=C_j$ then we can remove $j$ and everything would remain same, thus getting intersection number less than $omega(G)$ which is impossible.



I think the proof is correct, but I am a little unsure if I can indeed remove $j$, but to complete my task I must give an example where $c(G)>omega(G)$, I can't seem to find it. Some help would be appreciated. Thanks.










share|cite|improve this question









$endgroup$




Define the number of cliques in a graph $G$ to be $c(G)$ and the intersection number of the graph to be $omega(G)$. I have been tasked to comment on the inequality between $c(G)$ and $omega(G)$. I believe that $c(G)geq omega(G)$. Consider $S_v$ to be the set corresponding to the vertex $v$. Define $C_i=v lvert iin S_v$ for each $iin S$. Now $C_i$ is a complete subgraph of $G$ and
also if $C_i=C_j$ then we can remove $j$ and everything would remain same, thus getting intersection number less than $omega(G)$ which is impossible.



I think the proof is correct, but I am a little unsure if I can indeed remove $j$, but to complete my task I must give an example where $c(G)>omega(G)$, I can't seem to find it. Some help would be appreciated. Thanks.







graph-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 14 '16 at 14:57









shadow10shadow10

2,877931




2,877931











  • $begingroup$
    did you ever find an answer to this?
    $endgroup$
    – rachelhoward
    Apr 26 '18 at 23:22
















  • $begingroup$
    did you ever find an answer to this?
    $endgroup$
    – rachelhoward
    Apr 26 '18 at 23:22















$begingroup$
did you ever find an answer to this?
$endgroup$
– rachelhoward
Apr 26 '18 at 23:22




$begingroup$
did you ever find an answer to this?
$endgroup$
– rachelhoward
Apr 26 '18 at 23:22










1 Answer
1






active

oldest

votes


















1












$begingroup$

It is quite straightforward from the definition. You are comparing the number of cliques, with the minimum number of cliques that have a certain condition (that is, they cover the set of edges of the graph). In other words, you are comparing the size of a set, with the size of its subset.



It is known that the number of cliques in a graph is no smaller than the number of edges, i.e. $c(G) geq m$. Also, we know that the number of edges is an upper bound for the intersection number, i.e. $omega(G)leq m$. Doesn't this imply the proof that you are looking for?






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1654500%2fnumber-of-cliques-in-a-graph-and-intersection-number%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    It is quite straightforward from the definition. You are comparing the number of cliques, with the minimum number of cliques that have a certain condition (that is, they cover the set of edges of the graph). In other words, you are comparing the size of a set, with the size of its subset.



    It is known that the number of cliques in a graph is no smaller than the number of edges, i.e. $c(G) geq m$. Also, we know that the number of edges is an upper bound for the intersection number, i.e. $omega(G)leq m$. Doesn't this imply the proof that you are looking for?






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      It is quite straightforward from the definition. You are comparing the number of cliques, with the minimum number of cliques that have a certain condition (that is, they cover the set of edges of the graph). In other words, you are comparing the size of a set, with the size of its subset.



      It is known that the number of cliques in a graph is no smaller than the number of edges, i.e. $c(G) geq m$. Also, we know that the number of edges is an upper bound for the intersection number, i.e. $omega(G)leq m$. Doesn't this imply the proof that you are looking for?






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        It is quite straightforward from the definition. You are comparing the number of cliques, with the minimum number of cliques that have a certain condition (that is, they cover the set of edges of the graph). In other words, you are comparing the size of a set, with the size of its subset.



        It is known that the number of cliques in a graph is no smaller than the number of edges, i.e. $c(G) geq m$. Also, we know that the number of edges is an upper bound for the intersection number, i.e. $omega(G)leq m$. Doesn't this imply the proof that you are looking for?






        share|cite|improve this answer









        $endgroup$



        It is quite straightforward from the definition. You are comparing the number of cliques, with the minimum number of cliques that have a certain condition (that is, they cover the set of edges of the graph). In other words, you are comparing the size of a set, with the size of its subset.



        It is known that the number of cliques in a graph is no smaller than the number of edges, i.e. $c(G) geq m$. Also, we know that the number of edges is an upper bound for the intersection number, i.e. $omega(G)leq m$. Doesn't this imply the proof that you are looking for?







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 28 at 9:56









        orezvaniorezvani

        254310




        254310



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1654500%2fnumber-of-cliques-in-a-graph-and-intersection-number%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu