On orthonormal basis of scalar products The Next CEO of Stack OverflowDot product in an orthonormal basisOrthonormal basisSets forming orthonormal basisDoes there exist a unique definition of dot product in $mathbb R^n$ such that the standard basis is orthonormal?Is there any distinction between these products: scalar, dot, inner?Orthonormal basis implies that the inner product equals the coordinate vectors under the basis multipled togetherCompute the angles between the elements of the standard basis with respect to this scalar productFinding an orthonormal basis relative to the dot product $v cdot w$=$x_1y_1+2x_2y_2+3x_3y_3+4x_4y_4$How can we define scalar product so that those three vectors will form orthonormal basis?Finding Orthonormal Basis from Orthogonal Basis

Compensation for working overtime on Saturdays

Early programmable calculators with RS-232

My boss doesn't want me to have a side project

How can a day be of 24 hours?

How seriously should I take size and weight limits of hand luggage?

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Why does freezing point matter when picking cooler ice packs?

How to pronounce fünf in 45

A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?

Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?

What difference does it make matching a word with/without a trailing whitespace?

Find a path from s to t using as few red nodes as possible

Is it OK to decorate a log book cover?

Upgrading From a 9 Speed Sora Derailleur?

Another proof that dividing by 0 does not exist -- is it right?

Incomplete cube

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

What steps are necessary to read a Modern SSD in Medieval Europe?

How can I replace x-axis labels with pre-determined symbols?

How should I connect my cat5 cable to connectors having an orange-green line?

How to unfasten electrical subpanel attached with ramset

That's an odd coin - I wonder why

Compilation of a 2d array and a 1d array

Why do we say “un seul M” and not “une seule M” even though M is a “consonne”?



On orthonormal basis of scalar products



The Next CEO of Stack OverflowDot product in an orthonormal basisOrthonormal basisSets forming orthonormal basisDoes there exist a unique definition of dot product in $mathbb R^n$ such that the standard basis is orthonormal?Is there any distinction between these products: scalar, dot, inner?Orthonormal basis implies that the inner product equals the coordinate vectors under the basis multipled togetherCompute the angles between the elements of the standard basis with respect to this scalar productFinding an orthonormal basis relative to the dot product $v cdot w$=$x_1y_1+2x_2y_2+3x_3y_3+4x_4y_4$How can we define scalar product so that those three vectors will form orthonormal basis?Finding Orthonormal Basis from Orthogonal Basis










0












$begingroup$


For x and y in $R^2$ we have: $$(x,y)= x_1y_1 + x_2y_2 + kx_1y_2 + kx_2y_1$$ where k is a real parameter. Give an example of orthonormal basis for this scalar product.
$$$$
I don't understand this question. Aren't orthonormal basis created in a way to give out the canonical product i.e., the dot product by definition? Can some please elaborate on this?










share|cite|improve this question







New contributor




Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    0












    $begingroup$


    For x and y in $R^2$ we have: $$(x,y)= x_1y_1 + x_2y_2 + kx_1y_2 + kx_2y_1$$ where k is a real parameter. Give an example of orthonormal basis for this scalar product.
    $$$$
    I don't understand this question. Aren't orthonormal basis created in a way to give out the canonical product i.e., the dot product by definition? Can some please elaborate on this?










    share|cite|improve this question







    New contributor




    Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      0












      0








      0


      1



      $begingroup$


      For x and y in $R^2$ we have: $$(x,y)= x_1y_1 + x_2y_2 + kx_1y_2 + kx_2y_1$$ where k is a real parameter. Give an example of orthonormal basis for this scalar product.
      $$$$
      I don't understand this question. Aren't orthonormal basis created in a way to give out the canonical product i.e., the dot product by definition? Can some please elaborate on this?










      share|cite|improve this question







      New contributor




      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      For x and y in $R^2$ we have: $$(x,y)= x_1y_1 + x_2y_2 + kx_1y_2 + kx_2y_1$$ where k is a real parameter. Give an example of orthonormal basis for this scalar product.
      $$$$
      I don't understand this question. Aren't orthonormal basis created in a way to give out the canonical product i.e., the dot product by definition? Can some please elaborate on this?







      linear-algebra






      share|cite|improve this question







      New contributor




      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Mar 28 at 10:08









      JayJay

      144




      144




      New contributor




      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Jay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          What you have to do is to come with an orthonormal basis relative to the given inner product, not the usual inner product. You can start with $(1,0)$ and calculate its norm. You will get $|(1,0)|=1$. Then try to find $(x,y)$ such that its inner product with $(1,0)$ is $0$. One such vector is $(x,y)=(1,-frac 1 k)$. Then you have to normalize it so that it becomes a unit vector. You will end up with the orthonormal basis $(1,0), frac 1 c(1,-frac 1 k)$ where $c=sqrt frac 1 k^2-1$. Note the given expression defines an inner product only when $|k|<1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
            $endgroup$
            – Jay
            Mar 28 at 10:36



















          0












          $begingroup$

          You have to find $x,y in mathbb R^2$ such that




          1. $(x,x)=(y,y)=1$.

          and



          1. $(x,y)=0.$





          share|cite|improve this answer









          $endgroup$




















            0












            $begingroup$

            An orthonormal basis is defined with respect to particular inner product. That is, given a vector space $V$ over $mathbb R$, an inner product structure is a map $V times V rightarrow mathbb R$ satisfying certain conditions (bilinearity, symmetry, etc).



            In this case, we have $V = mathbb R^2$, and we are given the inner product $$f: V times V rightarrow mathbb R quad f(vec x, vec y) = x_1y_1 + x_2y_2 + k x_1y_2 + kx_2y_1$$



            Note that from the inner product, we can define the length/metric as $||vec x|| equiv sqrtf(vec x, vec x)$.



            That is, the norm of the vector is the square root of the dot product of a vector with itself.



            Now, we are to find two vectors $vec x, vec y in mathbbR^2$ such that:



            1. $||x|| = 1$

            2. $ ||y|| = 1$

            3. $ f(x, y) = 0$

            Let's go through the conditions and see what we need.



            beginalign*
            &||x|| = 1 \
            &sqrtf(x, x) = 1 \
            &f(x, x) = 1 quad textsquare on both sides\
            &x_1x_1 + x_2x_2 + kx_1x_2 + kx_2x_1 = 1 quad textuse $f$ definition\
            &x_1^2 + x_2^2 + 2kx_1x_2 = 1 \
            endalign*



            Similarly, for $||y|| = 1$, we get the condition:
            beginalign*
            &y_1^2 + y_2^2 + 2ky_1y_2 = 1
            endalign*



            From the last condition, we get
            beginalign*
            x_1y_1 + x_2y_2 + k(x_1y_2 + x_2y_1) = 0
            endalign*






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              Jay is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165697%2fon-orthonormal-basis-of-scalar-products%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              What you have to do is to come with an orthonormal basis relative to the given inner product, not the usual inner product. You can start with $(1,0)$ and calculate its norm. You will get $|(1,0)|=1$. Then try to find $(x,y)$ such that its inner product with $(1,0)$ is $0$. One such vector is $(x,y)=(1,-frac 1 k)$. Then you have to normalize it so that it becomes a unit vector. You will end up with the orthonormal basis $(1,0), frac 1 c(1,-frac 1 k)$ where $c=sqrt frac 1 k^2-1$. Note the given expression defines an inner product only when $|k|<1$.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
                $endgroup$
                – Jay
                Mar 28 at 10:36
















              1












              $begingroup$

              What you have to do is to come with an orthonormal basis relative to the given inner product, not the usual inner product. You can start with $(1,0)$ and calculate its norm. You will get $|(1,0)|=1$. Then try to find $(x,y)$ such that its inner product with $(1,0)$ is $0$. One such vector is $(x,y)=(1,-frac 1 k)$. Then you have to normalize it so that it becomes a unit vector. You will end up with the orthonormal basis $(1,0), frac 1 c(1,-frac 1 k)$ where $c=sqrt frac 1 k^2-1$. Note the given expression defines an inner product only when $|k|<1$.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
                $endgroup$
                – Jay
                Mar 28 at 10:36














              1












              1








              1





              $begingroup$

              What you have to do is to come with an orthonormal basis relative to the given inner product, not the usual inner product. You can start with $(1,0)$ and calculate its norm. You will get $|(1,0)|=1$. Then try to find $(x,y)$ such that its inner product with $(1,0)$ is $0$. One such vector is $(x,y)=(1,-frac 1 k)$. Then you have to normalize it so that it becomes a unit vector. You will end up with the orthonormal basis $(1,0), frac 1 c(1,-frac 1 k)$ where $c=sqrt frac 1 k^2-1$. Note the given expression defines an inner product only when $|k|<1$.






              share|cite|improve this answer









              $endgroup$



              What you have to do is to come with an orthonormal basis relative to the given inner product, not the usual inner product. You can start with $(1,0)$ and calculate its norm. You will get $|(1,0)|=1$. Then try to find $(x,y)$ such that its inner product with $(1,0)$ is $0$. One such vector is $(x,y)=(1,-frac 1 k)$. Then you have to normalize it so that it becomes a unit vector. You will end up with the orthonormal basis $(1,0), frac 1 c(1,-frac 1 k)$ where $c=sqrt frac 1 k^2-1$. Note the given expression defines an inner product only when $|k|<1$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Mar 28 at 10:18









              Kavi Rama MurthyKavi Rama Murthy

              71.6k53170




              71.6k53170











              • $begingroup$
                Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
                $endgroup$
                – Jay
                Mar 28 at 10:36

















              • $begingroup$
                Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
                $endgroup$
                – Jay
                Mar 28 at 10:36
















              $begingroup$
              Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
              $endgroup$
              – Jay
              Mar 28 at 10:36





              $begingroup$
              Can you explain the normalization a bit more? I'm getting $c=sqrt(frac1k^2 -1)$
              $endgroup$
              – Jay
              Mar 28 at 10:36












              0












              $begingroup$

              You have to find $x,y in mathbb R^2$ such that




              1. $(x,x)=(y,y)=1$.

              and



              1. $(x,y)=0.$





              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                You have to find $x,y in mathbb R^2$ such that




                1. $(x,x)=(y,y)=1$.

                and



                1. $(x,y)=0.$





                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  You have to find $x,y in mathbb R^2$ such that




                  1. $(x,x)=(y,y)=1$.

                  and



                  1. $(x,y)=0.$





                  share|cite|improve this answer









                  $endgroup$



                  You have to find $x,y in mathbb R^2$ such that




                  1. $(x,x)=(y,y)=1$.

                  and



                  1. $(x,y)=0.$






                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 28 at 10:14









                  FredFred

                  48.7k11849




                  48.7k11849





















                      0












                      $begingroup$

                      An orthonormal basis is defined with respect to particular inner product. That is, given a vector space $V$ over $mathbb R$, an inner product structure is a map $V times V rightarrow mathbb R$ satisfying certain conditions (bilinearity, symmetry, etc).



                      In this case, we have $V = mathbb R^2$, and we are given the inner product $$f: V times V rightarrow mathbb R quad f(vec x, vec y) = x_1y_1 + x_2y_2 + k x_1y_2 + kx_2y_1$$



                      Note that from the inner product, we can define the length/metric as $||vec x|| equiv sqrtf(vec x, vec x)$.



                      That is, the norm of the vector is the square root of the dot product of a vector with itself.



                      Now, we are to find two vectors $vec x, vec y in mathbbR^2$ such that:



                      1. $||x|| = 1$

                      2. $ ||y|| = 1$

                      3. $ f(x, y) = 0$

                      Let's go through the conditions and see what we need.



                      beginalign*
                      &||x|| = 1 \
                      &sqrtf(x, x) = 1 \
                      &f(x, x) = 1 quad textsquare on both sides\
                      &x_1x_1 + x_2x_2 + kx_1x_2 + kx_2x_1 = 1 quad textuse $f$ definition\
                      &x_1^2 + x_2^2 + 2kx_1x_2 = 1 \
                      endalign*



                      Similarly, for $||y|| = 1$, we get the condition:
                      beginalign*
                      &y_1^2 + y_2^2 + 2ky_1y_2 = 1
                      endalign*



                      From the last condition, we get
                      beginalign*
                      x_1y_1 + x_2y_2 + k(x_1y_2 + x_2y_1) = 0
                      endalign*






                      share|cite|improve this answer









                      $endgroup$

















                        0












                        $begingroup$

                        An orthonormal basis is defined with respect to particular inner product. That is, given a vector space $V$ over $mathbb R$, an inner product structure is a map $V times V rightarrow mathbb R$ satisfying certain conditions (bilinearity, symmetry, etc).



                        In this case, we have $V = mathbb R^2$, and we are given the inner product $$f: V times V rightarrow mathbb R quad f(vec x, vec y) = x_1y_1 + x_2y_2 + k x_1y_2 + kx_2y_1$$



                        Note that from the inner product, we can define the length/metric as $||vec x|| equiv sqrtf(vec x, vec x)$.



                        That is, the norm of the vector is the square root of the dot product of a vector with itself.



                        Now, we are to find two vectors $vec x, vec y in mathbbR^2$ such that:



                        1. $||x|| = 1$

                        2. $ ||y|| = 1$

                        3. $ f(x, y) = 0$

                        Let's go through the conditions and see what we need.



                        beginalign*
                        &||x|| = 1 \
                        &sqrtf(x, x) = 1 \
                        &f(x, x) = 1 quad textsquare on both sides\
                        &x_1x_1 + x_2x_2 + kx_1x_2 + kx_2x_1 = 1 quad textuse $f$ definition\
                        &x_1^2 + x_2^2 + 2kx_1x_2 = 1 \
                        endalign*



                        Similarly, for $||y|| = 1$, we get the condition:
                        beginalign*
                        &y_1^2 + y_2^2 + 2ky_1y_2 = 1
                        endalign*



                        From the last condition, we get
                        beginalign*
                        x_1y_1 + x_2y_2 + k(x_1y_2 + x_2y_1) = 0
                        endalign*






                        share|cite|improve this answer









                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          An orthonormal basis is defined with respect to particular inner product. That is, given a vector space $V$ over $mathbb R$, an inner product structure is a map $V times V rightarrow mathbb R$ satisfying certain conditions (bilinearity, symmetry, etc).



                          In this case, we have $V = mathbb R^2$, and we are given the inner product $$f: V times V rightarrow mathbb R quad f(vec x, vec y) = x_1y_1 + x_2y_2 + k x_1y_2 + kx_2y_1$$



                          Note that from the inner product, we can define the length/metric as $||vec x|| equiv sqrtf(vec x, vec x)$.



                          That is, the norm of the vector is the square root of the dot product of a vector with itself.



                          Now, we are to find two vectors $vec x, vec y in mathbbR^2$ such that:



                          1. $||x|| = 1$

                          2. $ ||y|| = 1$

                          3. $ f(x, y) = 0$

                          Let's go through the conditions and see what we need.



                          beginalign*
                          &||x|| = 1 \
                          &sqrtf(x, x) = 1 \
                          &f(x, x) = 1 quad textsquare on both sides\
                          &x_1x_1 + x_2x_2 + kx_1x_2 + kx_2x_1 = 1 quad textuse $f$ definition\
                          &x_1^2 + x_2^2 + 2kx_1x_2 = 1 \
                          endalign*



                          Similarly, for $||y|| = 1$, we get the condition:
                          beginalign*
                          &y_1^2 + y_2^2 + 2ky_1y_2 = 1
                          endalign*



                          From the last condition, we get
                          beginalign*
                          x_1y_1 + x_2y_2 + k(x_1y_2 + x_2y_1) = 0
                          endalign*






                          share|cite|improve this answer









                          $endgroup$



                          An orthonormal basis is defined with respect to particular inner product. That is, given a vector space $V$ over $mathbb R$, an inner product structure is a map $V times V rightarrow mathbb R$ satisfying certain conditions (bilinearity, symmetry, etc).



                          In this case, we have $V = mathbb R^2$, and we are given the inner product $$f: V times V rightarrow mathbb R quad f(vec x, vec y) = x_1y_1 + x_2y_2 + k x_1y_2 + kx_2y_1$$



                          Note that from the inner product, we can define the length/metric as $||vec x|| equiv sqrtf(vec x, vec x)$.



                          That is, the norm of the vector is the square root of the dot product of a vector with itself.



                          Now, we are to find two vectors $vec x, vec y in mathbbR^2$ such that:



                          1. $||x|| = 1$

                          2. $ ||y|| = 1$

                          3. $ f(x, y) = 0$

                          Let's go through the conditions and see what we need.



                          beginalign*
                          &||x|| = 1 \
                          &sqrtf(x, x) = 1 \
                          &f(x, x) = 1 quad textsquare on both sides\
                          &x_1x_1 + x_2x_2 + kx_1x_2 + kx_2x_1 = 1 quad textuse $f$ definition\
                          &x_1^2 + x_2^2 + 2kx_1x_2 = 1 \
                          endalign*



                          Similarly, for $||y|| = 1$, we get the condition:
                          beginalign*
                          &y_1^2 + y_2^2 + 2ky_1y_2 = 1
                          endalign*



                          From the last condition, we get
                          beginalign*
                          x_1y_1 + x_2y_2 + k(x_1y_2 + x_2y_1) = 0
                          endalign*







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Mar 28 at 10:15









                          Siddharth BhatSiddharth Bhat

                          3,1821918




                          3,1821918




















                              Jay is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              Jay is a new contributor. Be nice, and check out our Code of Conduct.












                              Jay is a new contributor. Be nice, and check out our Code of Conduct.











                              Jay is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165697%2fon-orthonormal-basis-of-scalar-products%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                              Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                              Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu