Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)? The Next CEO of Stack OverflowMeasuring entropy for a table (e.g., SQL results)Information of a stream of bitsCan a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?How to compare conditional entropy and mutual information?Why the alphabet of the digital information is composed of 2 elements?One-shot Private Randomness ExtractorFind minimum conditional entropyHigher order empirical entropy is not the entropy of the empirical distribution?Conceptual overview: Self-information, Mutual information, uncertainty, entropyHow realistic is the i.i.d assumption in the definition of Shannon's entropy?

Man transported from Alternate World into ours by a Neutrino Detector

Incomplete cube

"Eavesdropping" vs "Listen in on"

logical reads on global temp table, but not on session-level temp table

Finitely generated matrix groups whose eigenvalues are all algebraic

What did the word "leisure" mean in late 18th Century usage?

Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?

How seriously should I take size and weight limits of hand luggage?

Calculating discount not working

Create custom note boxes

How do I secure a TV wall mount?

How to unfasten electrical subpanel attached with ramset

Find the majority element, which appears more than half the time

Direct Implications Between USA and UK in Event of No-Deal Brexit

What day is it again?

Avoiding the "not like other girls" trope?

What does this strange code stamp on my passport mean?

Can Sri Krishna be called 'a person'?

Is a distribution that is normal, but highly skewed, considered Gaussian?

How should I connect my cat5 cable to connectors having an orange-green line?

How can the PCs determine if an item is a phylactery?

What does it mean 'exit 1' for a job status after rclone sync

Is a linearly independent set whose span is dense a Schauder basis?

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version



Under what conditions does the function C = f(A,B) satisfy H(C|A) = H(B)?



The Next CEO of Stack OverflowMeasuring entropy for a table (e.g., SQL results)Information of a stream of bitsCan a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?How to compare conditional entropy and mutual information?Why the alphabet of the digital information is composed of 2 elements?One-shot Private Randomness ExtractorFind minimum conditional entropyHigher order empirical entropy is not the entropy of the empirical distribution?Conceptual overview: Self-information, Mutual information, uncertainty, entropyHow realistic is the i.i.d assumption in the definition of Shannon's entropy?










3












$begingroup$


Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above holds.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    Mar 28 at 8:04










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    Mar 28 at 8:11















3












$begingroup$


Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above holds.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    Mar 28 at 8:04










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    Mar 28 at 8:11













3












3








3





$begingroup$


Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above holds.










share|cite|improve this question











$endgroup$




Suppose we have a function $f$,



$$
C = f(A,B),
$$



where $A$, $B$ and $C$ are random variables.



I notice that when the random variables are binary ($0, 1$) and $f$ is the XOR operation, we have the following identity:



$$
H(C|A) = H(B),
$$



where $H(B)$ is the entropy of $B$ and $H(C|A)$ is the conditional entropy of $C$ given $A$.



Obviously this is not true for a general $f$. What I am interested to know is, is there a set of conditions on $f$ and $A,B,C$, under which the identity above holds.







information-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 17 hours ago







hklel

















asked Mar 28 at 7:20









hklelhklel

1255




1255







  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    Mar 28 at 8:04










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    Mar 28 at 8:11












  • 1




    $begingroup$
    The function needs to be injective with respect to its second argument.
    $endgroup$
    – Yuval Filmus
    Mar 28 at 8:04










  • $begingroup$
    @YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
    $endgroup$
    – hklel
    Mar 28 at 8:11







1




1




$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
Mar 28 at 8:04




$begingroup$
The function needs to be injective with respect to its second argument.
$endgroup$
– Yuval Filmus
Mar 28 at 8:04












$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
Mar 28 at 8:11




$begingroup$
@YuvalFilmus Ah that makes sense! I didn't know the term "injective". Do you want to elaborate a bit and write an answer so I can upvote it?
$endgroup$
– hklel
Mar 28 at 8:11










2 Answers
2






active

oldest

votes


















4












$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    Mar 28 at 8:45







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:03



















8












$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:04










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    Mar 28 at 10:34











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106156%2funder-what-conditions-does-the-function-c-fa-b-satisfy-hca-hb%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    Mar 28 at 8:45







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:03
















4












$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    Mar 28 at 8:45







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:03














4












4








4





$begingroup$

The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.






share|cite|improve this answer











$endgroup$



The following answer assumes that $A,B$ are independent, and that $A,B$ have full support on their respective domains (the latter is without loss of generality). For the general case, see the other answer.



Let's write your equation in a slightly different way:
$$
H(B) = H(f(A,B)|A) = operatorname*mathbbE_a sim A H(f(a,B)).
$$

Clearly $H(f(a,B)) leq H(B)$, with equality if and only if $f(a,b_1) neq f(a,b_2)$ whenever $b_1 neq b_2$. We deduce that $H(B) = H(f(A,B)|A)$ if and only if $f$ is injective in its second argument, i.e., for all $a$ and $b_1 neq b_2$, we have $f(a,b_1) neq f(a,b_2)$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 28 at 10:12

























answered Mar 28 at 8:28









Yuval FilmusYuval Filmus

195k15184349




195k15184349







  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    Mar 28 at 8:45







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:03













  • 1




    $begingroup$
    $H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
    $endgroup$
    – xskxzr
    Mar 28 at 8:45







  • 3




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:03








1




1




$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
Mar 28 at 8:45





$begingroup$
$H(f(A,B)|A)=mathbbE_aH(f(a,B)|A=a)$, and $H(f(a,B)|A=a)$ is different from $H(f(a,B))$ since $A$ and $B$ may be dependent.
$endgroup$
– xskxzr
Mar 28 at 8:45





3




3




$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
Mar 28 at 10:03





$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
Mar 28 at 10:03












8












$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:04










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    Mar 28 at 10:34















8












$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:04










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    Mar 28 at 10:34













8












8








8





$begingroup$

Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.






share|cite|improve this answer











$endgroup$



Note



beginalign
0&=H(C|A,B)\
&=H(A,B,C)-H(A,B)\
&=H(B|A,C)+H(C|A)+H(A)-H(A,B)quadtext(chain rule)\
&=H(B|A,C)+H(C|A)-H(B|A),
endalign



so $H(C|A)=H(B)$ is equivalently $H(B|A,C)+H(B)-H(B|A)=0$. Also note $H(B|A,C)ge 0$ and $H(B)ge H(B|A)$, your condition is equivalently $H(B|A,C)=0wedge H(B)=H(B|A)$.



For a human-readable explanation, $H(B|A,C)=0$ means $B$ is determined by $A$ and $C$, that is, for any fixed $a$ in the support of $A$, $f(a,b)$ as a function of $b$ with domain $bmid mathrmPrA=a, B=b>0$ is an injection. $H(B)=H(B|A)$ means $A$ and $B$ are independent of each other.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 28 at 10:34

























answered Mar 28 at 8:38









xskxzrxskxzr

4,06921033




4,06921033







  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:04










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    Mar 28 at 10:34












  • 2




    $begingroup$
    The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
    $endgroup$
    – Emil Jeřábek
    Mar 28 at 10:04










  • $begingroup$
    @EmilJeřábek Thanks, fixed.
    $endgroup$
    – xskxzr
    Mar 28 at 10:34







2




2




$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
Mar 28 at 10:04




$begingroup$
The conclusion that $f$ is injective in the second argument is only correct if $Pr(A=a)>0$ and $Pr(B=b)>0$ for all $(a,b)inoperatornamedom(f)$.
$endgroup$
– Emil Jeřábek
Mar 28 at 10:04












$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
Mar 28 at 10:34




$begingroup$
@EmilJeřábek Thanks, fixed.
$endgroup$
– xskxzr
Mar 28 at 10:34

















draft saved

draft discarded
















































Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106156%2funder-what-conditions-does-the-function-c-fa-b-satisfy-hca-hb%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu