Proof verification about a property of the topological space $[0,1]$ Part 2 The Next CEO of Stack OverflowProof verification about a property of the topological space $[0,1]$Independence of $n$ random variablesConvergence of subsets defined by measureSolution Verification: Prove in detail that the open rectangles in the Euclidean plane form an open baseproof verification about the union of non-empty-intersection connected subspace is connected.Show these unions are equalShow that $[1/2, 1] notin mathscrT_1Y$.Is the set $A_i$, $i = 1,2,3$ connected in the space $C[0,1]$?Given a point $c in mathbbR^n$, find the nearest point $d in [a_1, b_1] times cdots times [a_n, b_n]$ to $c$.choose the correct option about topological space $(mathbbZ,T)$?Proof verification about a property of the topological space $[0,1]$

Read/write a pipe-delimited file line by line with some simple text manipulation

logical reads on global temp table, but not on session-level temp table

Is this a new Fibonacci Identity?

Man transported from Alternate World into ours by a Neutrino Detector

Is there a rule of thumb for determining the amount one should accept for a settlement offer?

How dangerous is XSS

Can Sri Krishna be called 'a person'?

Finitely generated matrix groups whose eigenvalues are all algebraic

"Eavesdropping" vs "Listen in on"

That's an odd coin - I wonder why

Can a PhD from a non-TU9 German university become a professor in a TU9 university?

Is it reasonable to ask other researchers to send me their previous grant applications?

Could you use a laser beam as a modulated carrier wave for radio signal?

Is it OK to decorate a log book cover?

Cannot restore registry to default in Windows 10?

Can you teleport closer to a creature you are Frightened of?

Which acid/base does a strong base/acid react when added to a buffer solution?

Compensation for working overtime on Saturdays

Find the majority element, which appears more than half the time

How can I replace x-axis labels with pre-determined symbols?

How can the PCs determine if an item is a phylactery?

Simplify trigonometric expression using trigonometric identities

How to show a landlord what we have in savings?

Another proof that dividing by 0 does not exist -- is it right?



Proof verification about a property of the topological space $[0,1]$ Part 2



The Next CEO of Stack OverflowProof verification about a property of the topological space $[0,1]$Independence of $n$ random variablesConvergence of subsets defined by measureSolution Verification: Prove in detail that the open rectangles in the Euclidean plane form an open baseproof verification about the union of non-empty-intersection connected subspace is connected.Show these unions are equalShow that $[1/2, 1] notin mathscrT_1Y$.Is the set $A_i$, $i = 1,2,3$ connected in the space $C[0,1]$?Given a point $c in mathbbR^n$, find the nearest point $d in [a_1, b_1] times cdots times [a_n, b_n]$ to $c$.choose the correct option about topological space $(mathbbZ,T)$?Proof verification about a property of the topological space $[0,1]$










1












$begingroup$


Suppose $A_1,dots,A_k$ are connected open subsets of $[0,1]$ such that $[0,1]=bigcup_i=1^k A_i$ and $A_i notsubseteq A_j$ for each $ine j$.



By characterization of connected subsets of $mathbbR$ I know that each $A_i$ is an interval.



I want to show:




There exist $0=a_0<a_1<dots<a_k=1$ real numbers such that $[a_i-1,a_i]subseteq A_i$ for each $ileq k$ (possibly permuting the $A_i$'s)




My argument



Permuting the $A_i$'s if necessary let's suppose



$$A_1=[0=b_1,c_1), A_2=(b_2,c_2),dots, A_k-1=(b_k-1,c_k-1), A_k=(b_k,c_k=1]$$



with the ordering $b_i<b_i+1$ for each $i=1,dots,k-1$.



Note that it is not possible that there are indices $ine j$ such that $b_i=b_j$ otherwise we would have $A_isubseteq A_j$ or vicecersa.



Note also that we have also $c_i<c_i+1$ for each $i=1,dots,k-1$ otherwise we would have $A_i+1subseteq A_i$.



I want to show that $$b_i+1<c_i$$ for each $i=1,dots,k-1$



For absurd assume that $b_i+1ge c_i$ and take $xin [c_i,b_i+1]$. Since $x ge c_i$ it follows that $xnotin A_j$ for each $j=1,dots,i$. Since $x leq b_i+1$ it follows that $x notin A_j$ for each $j=i+1,dots,k$. This is a contradiction since $[0,1]=bigcup_i=1^k A_i$.



Now the proof ends by chosing $a_i in (b_i+1,c_i)$.




Is my proof correct?




P.S. Yesterday I posted a similar question Proof verification about a property of the topological space $[0,1]$ and it turned out that not only the proof was wrong, but also the statement. Even if now I have more carefully written the proof, my experience says that the errors are always lurking, so I will be happy if you control it. Thank you! :)










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Yes, this proof does the job, it seems
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 28 at 10:40















1












$begingroup$


Suppose $A_1,dots,A_k$ are connected open subsets of $[0,1]$ such that $[0,1]=bigcup_i=1^k A_i$ and $A_i notsubseteq A_j$ for each $ine j$.



By characterization of connected subsets of $mathbbR$ I know that each $A_i$ is an interval.



I want to show:




There exist $0=a_0<a_1<dots<a_k=1$ real numbers such that $[a_i-1,a_i]subseteq A_i$ for each $ileq k$ (possibly permuting the $A_i$'s)




My argument



Permuting the $A_i$'s if necessary let's suppose



$$A_1=[0=b_1,c_1), A_2=(b_2,c_2),dots, A_k-1=(b_k-1,c_k-1), A_k=(b_k,c_k=1]$$



with the ordering $b_i<b_i+1$ for each $i=1,dots,k-1$.



Note that it is not possible that there are indices $ine j$ such that $b_i=b_j$ otherwise we would have $A_isubseteq A_j$ or vicecersa.



Note also that we have also $c_i<c_i+1$ for each $i=1,dots,k-1$ otherwise we would have $A_i+1subseteq A_i$.



I want to show that $$b_i+1<c_i$$ for each $i=1,dots,k-1$



For absurd assume that $b_i+1ge c_i$ and take $xin [c_i,b_i+1]$. Since $x ge c_i$ it follows that $xnotin A_j$ for each $j=1,dots,i$. Since $x leq b_i+1$ it follows that $x notin A_j$ for each $j=i+1,dots,k$. This is a contradiction since $[0,1]=bigcup_i=1^k A_i$.



Now the proof ends by chosing $a_i in (b_i+1,c_i)$.




Is my proof correct?




P.S. Yesterday I posted a similar question Proof verification about a property of the topological space $[0,1]$ and it turned out that not only the proof was wrong, but also the statement. Even if now I have more carefully written the proof, my experience says that the errors are always lurking, so I will be happy if you control it. Thank you! :)










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Yes, this proof does the job, it seems
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 28 at 10:40













1












1








1





$begingroup$


Suppose $A_1,dots,A_k$ are connected open subsets of $[0,1]$ such that $[0,1]=bigcup_i=1^k A_i$ and $A_i notsubseteq A_j$ for each $ine j$.



By characterization of connected subsets of $mathbbR$ I know that each $A_i$ is an interval.



I want to show:




There exist $0=a_0<a_1<dots<a_k=1$ real numbers such that $[a_i-1,a_i]subseteq A_i$ for each $ileq k$ (possibly permuting the $A_i$'s)




My argument



Permuting the $A_i$'s if necessary let's suppose



$$A_1=[0=b_1,c_1), A_2=(b_2,c_2),dots, A_k-1=(b_k-1,c_k-1), A_k=(b_k,c_k=1]$$



with the ordering $b_i<b_i+1$ for each $i=1,dots,k-1$.



Note that it is not possible that there are indices $ine j$ such that $b_i=b_j$ otherwise we would have $A_isubseteq A_j$ or vicecersa.



Note also that we have also $c_i<c_i+1$ for each $i=1,dots,k-1$ otherwise we would have $A_i+1subseteq A_i$.



I want to show that $$b_i+1<c_i$$ for each $i=1,dots,k-1$



For absurd assume that $b_i+1ge c_i$ and take $xin [c_i,b_i+1]$. Since $x ge c_i$ it follows that $xnotin A_j$ for each $j=1,dots,i$. Since $x leq b_i+1$ it follows that $x notin A_j$ for each $j=i+1,dots,k$. This is a contradiction since $[0,1]=bigcup_i=1^k A_i$.



Now the proof ends by chosing $a_i in (b_i+1,c_i)$.




Is my proof correct?




P.S. Yesterday I posted a similar question Proof verification about a property of the topological space $[0,1]$ and it turned out that not only the proof was wrong, but also the statement. Even if now I have more carefully written the proof, my experience says that the errors are always lurking, so I will be happy if you control it. Thank you! :)










share|cite|improve this question











$endgroup$




Suppose $A_1,dots,A_k$ are connected open subsets of $[0,1]$ such that $[0,1]=bigcup_i=1^k A_i$ and $A_i notsubseteq A_j$ for each $ine j$.



By characterization of connected subsets of $mathbbR$ I know that each $A_i$ is an interval.



I want to show:




There exist $0=a_0<a_1<dots<a_k=1$ real numbers such that $[a_i-1,a_i]subseteq A_i$ for each $ileq k$ (possibly permuting the $A_i$'s)




My argument



Permuting the $A_i$'s if necessary let's suppose



$$A_1=[0=b_1,c_1), A_2=(b_2,c_2),dots, A_k-1=(b_k-1,c_k-1), A_k=(b_k,c_k=1]$$



with the ordering $b_i<b_i+1$ for each $i=1,dots,k-1$.



Note that it is not possible that there are indices $ine j$ such that $b_i=b_j$ otherwise we would have $A_isubseteq A_j$ or vicecersa.



Note also that we have also $c_i<c_i+1$ for each $i=1,dots,k-1$ otherwise we would have $A_i+1subseteq A_i$.



I want to show that $$b_i+1<c_i$$ for each $i=1,dots,k-1$



For absurd assume that $b_i+1ge c_i$ and take $xin [c_i,b_i+1]$. Since $x ge c_i$ it follows that $xnotin A_j$ for each $j=1,dots,i$. Since $x leq b_i+1$ it follows that $x notin A_j$ for each $j=i+1,dots,k$. This is a contradiction since $[0,1]=bigcup_i=1^k A_i$.



Now the proof ends by chosing $a_i in (b_i+1,c_i)$.




Is my proof correct?




P.S. Yesterday I posted a similar question Proof verification about a property of the topological space $[0,1]$ and it turned out that not only the proof was wrong, but also the statement. Even if now I have more carefully written the proof, my experience says that the errors are always lurking, so I will be happy if you control it. Thank you! :)







real-analysis calculus general-topology recreational-mathematics real-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 28 at 22:46









Cookie

8,798123885




8,798123885










asked Mar 28 at 10:22









MinatoMinato

595314




595314







  • 1




    $begingroup$
    Yes, this proof does the job, it seems
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 28 at 10:40












  • 1




    $begingroup$
    Yes, this proof does the job, it seems
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 28 at 10:40







1




1




$begingroup$
Yes, this proof does the job, it seems
$endgroup$
– астон вілла олоф мэллбэрг
Mar 28 at 10:40




$begingroup$
Yes, this proof does the job, it seems
$endgroup$
– астон вілла олоф мэллбэрг
Mar 28 at 10:40










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165714%2fproof-verification-about-a-property-of-the-topological-space-0-1-part-2%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165714%2fproof-verification-about-a-property-of-the-topological-space-0-1-part-2%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu