Integrals involving Dirichlet kernel and sinc function The Next CEO of Stack OverflowHelp evaluating or upper-bounding integral $int_-infty^infty fracaboperatornamesinc^2(cx)a+boperatornamesinc^2(cx);dx$Integrating sinc / gaussian function with 2nd order polynomials as argumentsIntegral involving $operatornamesinc$ and exponentialCalculate $int_-T^T operatornamesincbig(tau-lambdabig) operatornamesincbig(tau-nubig)dtau$.Fourier transform of a product of two rect functionsImpossible definite integral!evaluate a Fraunhofer diffraction integralDefinite integral $int_y^infty$ involving two Meijer's G functionIntegral involving 2-dimensional Gaussian functionFourier transform of the convolution of a Dirac comb with the product of a complex exponential function and a rect function
Read/write a pipe-delimited file line by line with some simple text manipulation
Can you teleport closer to a creature you are Frightened of?
How to find if SQL server backup is encrypted with TDE without restoring the backup
Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version
How exploitable/balanced is this homebrew spell: Spell Permanency?
Avoiding the "not like other girls" trope?
How can I separate the number from the unit in argument?
MT "will strike" & LXX "will watch carefully" (Gen 3:15)?
Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico
Horror film about a man brought out of cryogenic suspension without a soul, around 1990
Calculate the Mean mean of two numbers
What does this strange code stamp on my passport mean?
Why doesn't Shulchan Aruch include the laws of destroying fruit trees?
Is there a rule of thumb for determining the amount one should accept for of a settlement offer?
Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact
How seriously should I take size and weight limits of hand luggage?
Is a distribution that is normal, but highly skewed, considered Gaussian?
Why can't we say "I have been having a dog"?
Could you use a laser beam as a modulated carrier wave for radio signal?
Simplify trigonometric expression using trigonometric identities
Can a PhD from a non-TU9 German university become a professor in a TU9 university?
Find the majority element, which appears more than half the time
Create custom note boxes
Upgrading From a 9 Speed Sora Derailleur?
Integrals involving Dirichlet kernel and sinc function
The Next CEO of Stack OverflowHelp evaluating or upper-bounding integral $int_-infty^infty fracaboperatornamesinc^2(cx)a+boperatornamesinc^2(cx);dx$Integrating sinc / gaussian function with 2nd order polynomials as argumentsIntegral involving $operatornamesinc$ and exponentialCalculate $int_-T^T operatornamesincbig(tau-lambdabig) operatornamesincbig(tau-nubig)dtau$.Fourier transform of a product of two rect functionsImpossible definite integral!evaluate a Fraunhofer diffraction integralDefinite integral $int_y^infty$ involving two Meijer's G functionIntegral involving 2-dimensional Gaussian functionFourier transform of the convolution of a Dirac comb with the product of a complex exponential function and a rect function
$begingroup$
I am looking to evaluate the following definite integral involving Dirichlet kernel and sinc function with phase.
beginequationI(d) = int_-infty^infty fracsin[N(k^"-k^')]sin(k^"-k^') fracsin(c(k^"-k^'))c(k^"-k^') fracsin(Nk^')sin(k^') fracsin(ck^')ck^' exp(ik^'d+iphi(k^')) rect Big(frack^'k_0Big) dk^' endequation
Seems to be difficult due to Dirichlet kernel. Thank you in advance.
definite-integrals convolution
$endgroup$
add a comment |
$begingroup$
I am looking to evaluate the following definite integral involving Dirichlet kernel and sinc function with phase.
beginequationI(d) = int_-infty^infty fracsin[N(k^"-k^')]sin(k^"-k^') fracsin(c(k^"-k^'))c(k^"-k^') fracsin(Nk^')sin(k^') fracsin(ck^')ck^' exp(ik^'d+iphi(k^')) rect Big(frack^'k_0Big) dk^' endequation
Seems to be difficult due to Dirichlet kernel. Thank you in advance.
definite-integrals convolution
$endgroup$
$begingroup$
No, the Dirichlet kernel cancel and with $int_-infty^infty$ instead of $int_0^k_0$ it would have a closed form.
$endgroup$
– reuns
Mar 25 at 22:13
$begingroup$
Kindly explain how they cancel? btw, I corrected for missing constant in the sinc argument.
$endgroup$
– user16409
Mar 25 at 22:52
$begingroup$
With your $c$ they don't anymore. Why would you want to evaluate $int_0^k_0$ ? With $int_-infty^infty$ it still has a closed form
$endgroup$
– reuns
Mar 25 at 22:54
$begingroup$
$int_0^k_0$ ? --> I have optical low pass filter that limits spatial frequencies.
$endgroup$
– user16409
Mar 25 at 23:06
add a comment |
$begingroup$
I am looking to evaluate the following definite integral involving Dirichlet kernel and sinc function with phase.
beginequationI(d) = int_-infty^infty fracsin[N(k^"-k^')]sin(k^"-k^') fracsin(c(k^"-k^'))c(k^"-k^') fracsin(Nk^')sin(k^') fracsin(ck^')ck^' exp(ik^'d+iphi(k^')) rect Big(frack^'k_0Big) dk^' endequation
Seems to be difficult due to Dirichlet kernel. Thank you in advance.
definite-integrals convolution
$endgroup$
I am looking to evaluate the following definite integral involving Dirichlet kernel and sinc function with phase.
beginequationI(d) = int_-infty^infty fracsin[N(k^"-k^')]sin(k^"-k^') fracsin(c(k^"-k^'))c(k^"-k^') fracsin(Nk^')sin(k^') fracsin(ck^')ck^' exp(ik^'d+iphi(k^')) rect Big(frack^'k_0Big) dk^' endequation
Seems to be difficult due to Dirichlet kernel. Thank you in advance.
definite-integrals convolution
definite-integrals convolution
edited Mar 28 at 9:25
user16409
asked Mar 25 at 21:02
user16409user16409
85111
85111
$begingroup$
No, the Dirichlet kernel cancel and with $int_-infty^infty$ instead of $int_0^k_0$ it would have a closed form.
$endgroup$
– reuns
Mar 25 at 22:13
$begingroup$
Kindly explain how they cancel? btw, I corrected for missing constant in the sinc argument.
$endgroup$
– user16409
Mar 25 at 22:52
$begingroup$
With your $c$ they don't anymore. Why would you want to evaluate $int_0^k_0$ ? With $int_-infty^infty$ it still has a closed form
$endgroup$
– reuns
Mar 25 at 22:54
$begingroup$
$int_0^k_0$ ? --> I have optical low pass filter that limits spatial frequencies.
$endgroup$
– user16409
Mar 25 at 23:06
add a comment |
$begingroup$
No, the Dirichlet kernel cancel and with $int_-infty^infty$ instead of $int_0^k_0$ it would have a closed form.
$endgroup$
– reuns
Mar 25 at 22:13
$begingroup$
Kindly explain how they cancel? btw, I corrected for missing constant in the sinc argument.
$endgroup$
– user16409
Mar 25 at 22:52
$begingroup$
With your $c$ they don't anymore. Why would you want to evaluate $int_0^k_0$ ? With $int_-infty^infty$ it still has a closed form
$endgroup$
– reuns
Mar 25 at 22:54
$begingroup$
$int_0^k_0$ ? --> I have optical low pass filter that limits spatial frequencies.
$endgroup$
– user16409
Mar 25 at 23:06
$begingroup$
No, the Dirichlet kernel cancel and with $int_-infty^infty$ instead of $int_0^k_0$ it would have a closed form.
$endgroup$
– reuns
Mar 25 at 22:13
$begingroup$
No, the Dirichlet kernel cancel and with $int_-infty^infty$ instead of $int_0^k_0$ it would have a closed form.
$endgroup$
– reuns
Mar 25 at 22:13
$begingroup$
Kindly explain how they cancel? btw, I corrected for missing constant in the sinc argument.
$endgroup$
– user16409
Mar 25 at 22:52
$begingroup$
Kindly explain how they cancel? btw, I corrected for missing constant in the sinc argument.
$endgroup$
– user16409
Mar 25 at 22:52
$begingroup$
With your $c$ they don't anymore. Why would you want to evaluate $int_0^k_0$ ? With $int_-infty^infty$ it still has a closed form
$endgroup$
– reuns
Mar 25 at 22:54
$begingroup$
With your $c$ they don't anymore. Why would you want to evaluate $int_0^k_0$ ? With $int_-infty^infty$ it still has a closed form
$endgroup$
– reuns
Mar 25 at 22:54
$begingroup$
$int_0^k_0$ ? --> I have optical low pass filter that limits spatial frequencies.
$endgroup$
– user16409
Mar 25 at 23:06
$begingroup$
$int_0^k_0$ ? --> I have optical low pass filter that limits spatial frequencies.
$endgroup$
– user16409
Mar 25 at 23:06
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162316%2fintegrals-involving-dirichlet-kernel-and-sinc-function%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162316%2fintegrals-involving-dirichlet-kernel-and-sinc-function%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
No, the Dirichlet kernel cancel and with $int_-infty^infty$ instead of $int_0^k_0$ it would have a closed form.
$endgroup$
– reuns
Mar 25 at 22:13
$begingroup$
Kindly explain how they cancel? btw, I corrected for missing constant in the sinc argument.
$endgroup$
– user16409
Mar 25 at 22:52
$begingroup$
With your $c$ they don't anymore. Why would you want to evaluate $int_0^k_0$ ? With $int_-infty^infty$ it still has a closed form
$endgroup$
– reuns
Mar 25 at 22:54
$begingroup$
$int_0^k_0$ ? --> I have optical low pass filter that limits spatial frequencies.
$endgroup$
– user16409
Mar 25 at 23:06