Existence of Harder-Narasimhan filtration The Next CEO of Stack OverflowThe Harder-Narasimhan filtration with inverse slopes.Rank of a coherent sheaf in terms of coefficients of the Hilbert polynomialDeformation of a point on a Quot schemeDefinition of degree of a coherent sheafDo finite groups act admissibly on separated schemes of finite type over kA characterization of pure sheafOne-dimensional Sheaves and Pushforwards of Vector BundlesOn purity of structure sheaf of a closed subschemeSome basic question on torsion filtration .On torsion sheaf of a coherent sheaf of $dim X$

Is it possible to make a 9x9 table fit within the default margins?

Is it correct to say moon starry nights?

What is the difference between 'contrib' and 'non-free' packages repositories?

How to unfasten electrical subpanel attached with ramset

What does this strange code stamp on my passport mean?

Upgrading From a 9 Speed Sora Derailleur?

Compensation for working overtime on Saturdays

Does the Idaho Potato Commission associate potato skins with healthy eating?

Man transported from Alternate World into ours by a Neutrino Detector

Mathematica command that allows it to read my intentions

Free fall ellipse or parabola?

logical reads on global temp table, but not on session-level temp table

Is there a rule of thumb for determining the amount one should accept for of a settlement offer?

Compilation of a 2d array and a 1d array

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

How can I separate the number from the unit in argument?

Shortening a title without changing its meaning

Is a distribution that is normal, but highly skewed, considered Gaussian?

Planeswalker Ability and Death Timing

Prodigo = pro + ago?

Creating a script with console commands

How to implement Comparable so it is consistent with identity-equality

How does a dynamic QR code work?

Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?



Existence of Harder-Narasimhan filtration



The Next CEO of Stack OverflowThe Harder-Narasimhan filtration with inverse slopes.Rank of a coherent sheaf in terms of coefficients of the Hilbert polynomialDeformation of a point on a Quot schemeDefinition of degree of a coherent sheafDo finite groups act admissibly on separated schemes of finite type over kA characterization of pure sheafOne-dimensional Sheaves and Pushforwards of Vector BundlesOn purity of structure sheaf of a closed subschemeSome basic question on torsion filtration .On torsion sheaf of a coherent sheaf of $dim X$










3












$begingroup$


I am trying to understand the proof of the existence of Harder-Narasimhan filtration from Huybrechts and Lehn.



Let $X$ be a projective scheme with a fixed ample line bundle. Then the theorem says that every pure sheaf has a unique Harder-Narasimhan filtration.



The book first proves the following lemma : let $E$ be a purely $d$-dimensional sheaf. Then there is a subsheaf $Fsubset E$ such that for all subsheaves $Gsubset E$ one has $p(F)geq p(G) $ and in case of equality $Gsubset F$. Moreover $F$ is uniquely determined and semistable. $F$ is the maximal destabilizing subsheaf.



My doubt is as follows. Once we establish the existence of such an $F$, the book says by induction we can assume that $E/F$ has a Harder Narasimhan filtration.



What are we inducting on? My guess is the dimension of the sheaf $E$. But if so I am not able to see why dimension of $E/F$ is strictly less than dimension of $ E$. Any help will be appreciated!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I remember this proof being terrible. I do think that one is inducting on dimension, since one then passes from $E$ to $E/mathrmHN_1(E)$ which has strictly smaller dimension, and then proceeds from there.
    $endgroup$
    – Alex Youcis
    Mar 6 '15 at 9:59










  • $begingroup$
    Thanks @Alex! But can you tell me why it has strictly smaller dimension?
    $endgroup$
    – gradstudent
    Mar 6 '15 at 10:04















3












$begingroup$


I am trying to understand the proof of the existence of Harder-Narasimhan filtration from Huybrechts and Lehn.



Let $X$ be a projective scheme with a fixed ample line bundle. Then the theorem says that every pure sheaf has a unique Harder-Narasimhan filtration.



The book first proves the following lemma : let $E$ be a purely $d$-dimensional sheaf. Then there is a subsheaf $Fsubset E$ such that for all subsheaves $Gsubset E$ one has $p(F)geq p(G) $ and in case of equality $Gsubset F$. Moreover $F$ is uniquely determined and semistable. $F$ is the maximal destabilizing subsheaf.



My doubt is as follows. Once we establish the existence of such an $F$, the book says by induction we can assume that $E/F$ has a Harder Narasimhan filtration.



What are we inducting on? My guess is the dimension of the sheaf $E$. But if so I am not able to see why dimension of $E/F$ is strictly less than dimension of $ E$. Any help will be appreciated!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I remember this proof being terrible. I do think that one is inducting on dimension, since one then passes from $E$ to $E/mathrmHN_1(E)$ which has strictly smaller dimension, and then proceeds from there.
    $endgroup$
    – Alex Youcis
    Mar 6 '15 at 9:59










  • $begingroup$
    Thanks @Alex! But can you tell me why it has strictly smaller dimension?
    $endgroup$
    – gradstudent
    Mar 6 '15 at 10:04













3












3








3


1



$begingroup$


I am trying to understand the proof of the existence of Harder-Narasimhan filtration from Huybrechts and Lehn.



Let $X$ be a projective scheme with a fixed ample line bundle. Then the theorem says that every pure sheaf has a unique Harder-Narasimhan filtration.



The book first proves the following lemma : let $E$ be a purely $d$-dimensional sheaf. Then there is a subsheaf $Fsubset E$ such that for all subsheaves $Gsubset E$ one has $p(F)geq p(G) $ and in case of equality $Gsubset F$. Moreover $F$ is uniquely determined and semistable. $F$ is the maximal destabilizing subsheaf.



My doubt is as follows. Once we establish the existence of such an $F$, the book says by induction we can assume that $E/F$ has a Harder Narasimhan filtration.



What are we inducting on? My guess is the dimension of the sheaf $E$. But if so I am not able to see why dimension of $E/F$ is strictly less than dimension of $ E$. Any help will be appreciated!










share|cite|improve this question











$endgroup$




I am trying to understand the proof of the existence of Harder-Narasimhan filtration from Huybrechts and Lehn.



Let $X$ be a projective scheme with a fixed ample line bundle. Then the theorem says that every pure sheaf has a unique Harder-Narasimhan filtration.



The book first proves the following lemma : let $E$ be a purely $d$-dimensional sheaf. Then there is a subsheaf $Fsubset E$ such that for all subsheaves $Gsubset E$ one has $p(F)geq p(G) $ and in case of equality $Gsubset F$. Moreover $F$ is uniquely determined and semistable. $F$ is the maximal destabilizing subsheaf.



My doubt is as follows. Once we establish the existence of such an $F$, the book says by induction we can assume that $E/F$ has a Harder Narasimhan filtration.



What are we inducting on? My guess is the dimension of the sheaf $E$. But if so I am not able to see why dimension of $E/F$ is strictly less than dimension of $ E$. Any help will be appreciated!







algebraic-geometry schemes vector-bundles






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 6 '15 at 17:43







gradstudent

















asked Mar 6 '15 at 9:46









gradstudentgradstudent

1,313720




1,313720







  • 2




    $begingroup$
    I remember this proof being terrible. I do think that one is inducting on dimension, since one then passes from $E$ to $E/mathrmHN_1(E)$ which has strictly smaller dimension, and then proceeds from there.
    $endgroup$
    – Alex Youcis
    Mar 6 '15 at 9:59










  • $begingroup$
    Thanks @Alex! But can you tell me why it has strictly smaller dimension?
    $endgroup$
    – gradstudent
    Mar 6 '15 at 10:04












  • 2




    $begingroup$
    I remember this proof being terrible. I do think that one is inducting on dimension, since one then passes from $E$ to $E/mathrmHN_1(E)$ which has strictly smaller dimension, and then proceeds from there.
    $endgroup$
    – Alex Youcis
    Mar 6 '15 at 9:59










  • $begingroup$
    Thanks @Alex! But can you tell me why it has strictly smaller dimension?
    $endgroup$
    – gradstudent
    Mar 6 '15 at 10:04







2




2




$begingroup$
I remember this proof being terrible. I do think that one is inducting on dimension, since one then passes from $E$ to $E/mathrmHN_1(E)$ which has strictly smaller dimension, and then proceeds from there.
$endgroup$
– Alex Youcis
Mar 6 '15 at 9:59




$begingroup$
I remember this proof being terrible. I do think that one is inducting on dimension, since one then passes from $E$ to $E/mathrmHN_1(E)$ which has strictly smaller dimension, and then proceeds from there.
$endgroup$
– Alex Youcis
Mar 6 '15 at 9:59












$begingroup$
Thanks @Alex! But can you tell me why it has strictly smaller dimension?
$endgroup$
– gradstudent
Mar 6 '15 at 10:04




$begingroup$
Thanks @Alex! But can you tell me why it has strictly smaller dimension?
$endgroup$
– gradstudent
Mar 6 '15 at 10:04










2 Answers
2






active

oldest

votes


















0












$begingroup$

I think we can induct on the rank of $E$. Look at the sequence $0 to F to E to E/F to 0$. Since $rk(E) = rk(F) + rk(E/F)$, and $F$ is a proper nonzero subsheaf of $E$, so $rk(E/F) < rk(E)$, and so we can proceed via induction.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    I was thinking about induction on $alpha_d(E)$, where $alpha_d(E)/d!$ is the leading coefficient of the Hilbert polynomial of $E$, with the same notation as Huybrechts & Lehn. It is additive on exact sequences so we should have $alpha_d(E/F)<alpha_d(E)$. Moreover the base case $alpha_d(E)=0$ should be trivial since it implies $E=0$ (by a previous remark after the definition of the Hilbert polynomial).



    In fact thinking again about it, it is quite the same as inducting on the rank, since $textrk(E)=alpha_d(E)/alpha_d(O_X)$; the only (apparent) problem with rank is that it is not an integer in general.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1178036%2fexistence-of-harder-narasimhan-filtration%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      I think we can induct on the rank of $E$. Look at the sequence $0 to F to E to E/F to 0$. Since $rk(E) = rk(F) + rk(E/F)$, and $F$ is a proper nonzero subsheaf of $E$, so $rk(E/F) < rk(E)$, and so we can proceed via induction.






      share|cite|improve this answer









      $endgroup$

















        0












        $begingroup$

        I think we can induct on the rank of $E$. Look at the sequence $0 to F to E to E/F to 0$. Since $rk(E) = rk(F) + rk(E/F)$, and $F$ is a proper nonzero subsheaf of $E$, so $rk(E/F) < rk(E)$, and so we can proceed via induction.






        share|cite|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$

          I think we can induct on the rank of $E$. Look at the sequence $0 to F to E to E/F to 0$. Since $rk(E) = rk(F) + rk(E/F)$, and $F$ is a proper nonzero subsheaf of $E$, so $rk(E/F) < rk(E)$, and so we can proceed via induction.






          share|cite|improve this answer









          $endgroup$



          I think we can induct on the rank of $E$. Look at the sequence $0 to F to E to E/F to 0$. Since $rk(E) = rk(F) + rk(E/F)$, and $F$ is a proper nonzero subsheaf of $E$, so $rk(E/F) < rk(E)$, and so we can proceed via induction.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 20 '15 at 16:25









          nujranujra

          1




          1





















              0












              $begingroup$

              I was thinking about induction on $alpha_d(E)$, where $alpha_d(E)/d!$ is the leading coefficient of the Hilbert polynomial of $E$, with the same notation as Huybrechts & Lehn. It is additive on exact sequences so we should have $alpha_d(E/F)<alpha_d(E)$. Moreover the base case $alpha_d(E)=0$ should be trivial since it implies $E=0$ (by a previous remark after the definition of the Hilbert polynomial).



              In fact thinking again about it, it is quite the same as inducting on the rank, since $textrk(E)=alpha_d(E)/alpha_d(O_X)$; the only (apparent) problem with rank is that it is not an integer in general.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                I was thinking about induction on $alpha_d(E)$, where $alpha_d(E)/d!$ is the leading coefficient of the Hilbert polynomial of $E$, with the same notation as Huybrechts & Lehn. It is additive on exact sequences so we should have $alpha_d(E/F)<alpha_d(E)$. Moreover the base case $alpha_d(E)=0$ should be trivial since it implies $E=0$ (by a previous remark after the definition of the Hilbert polynomial).



                In fact thinking again about it, it is quite the same as inducting on the rank, since $textrk(E)=alpha_d(E)/alpha_d(O_X)$; the only (apparent) problem with rank is that it is not an integer in general.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  I was thinking about induction on $alpha_d(E)$, where $alpha_d(E)/d!$ is the leading coefficient of the Hilbert polynomial of $E$, with the same notation as Huybrechts & Lehn. It is additive on exact sequences so we should have $alpha_d(E/F)<alpha_d(E)$. Moreover the base case $alpha_d(E)=0$ should be trivial since it implies $E=0$ (by a previous remark after the definition of the Hilbert polynomial).



                  In fact thinking again about it, it is quite the same as inducting on the rank, since $textrk(E)=alpha_d(E)/alpha_d(O_X)$; the only (apparent) problem with rank is that it is not an integer in general.






                  share|cite|improve this answer









                  $endgroup$



                  I was thinking about induction on $alpha_d(E)$, where $alpha_d(E)/d!$ is the leading coefficient of the Hilbert polynomial of $E$, with the same notation as Huybrechts & Lehn. It is additive on exact sequences so we should have $alpha_d(E/F)<alpha_d(E)$. Moreover the base case $alpha_d(E)=0$ should be trivial since it implies $E=0$ (by a previous remark after the definition of the Hilbert polynomial).



                  In fact thinking again about it, it is quite the same as inducting on the rank, since $textrk(E)=alpha_d(E)/alpha_d(O_X)$; the only (apparent) problem with rank is that it is not an integer in general.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 28 at 15:25









                  OromisOromis

                  404412




                  404412



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1178036%2fexistence-of-harder-narasimhan-filtration%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu