Mathematical induction method The Next CEO of Stack OverflowStrong Mathematical Induction: Why More than One Base Case?Prove by induction help?Formal definition of Mathematical Induction & Strong InductionHow can be done by the method of mathematical induction?Mathematical Induction - InequalityMathematical induction and pigeon-hole principleMathematical Induction with Sigma NotationLesson in an induction problemBy mathematical induction prove that?Chess table Mathematical Induction Problem

Can you teleport closer to a creature you are Frightened of?

Arrows in tikz Markov chain diagram overlap

How to coordinate airplane tickets?

That's an odd coin - I wonder why

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

How badly should I try to prevent a user from XSSing themselves?

Why was Sir Cadogan fired?

Upgrading From a 9 Speed Sora Derailleur?

How to pronounce fünf in 45

Oldie but Goldie

Is it okay to majorly distort historical facts while writing a fiction story?

How do I secure a TV wall mount?

Free fall ellipse or parabola?

Man transported from Alternate World into ours by a Neutrino Detector

What did the word "leisure" mean in late 18th Century usage?

Creating a script with console commands

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Could a dragon use hot air to help it take off?

Calculate the Mean mean of two numbers

Mathematica command that allows it to read my intentions

Could you use a laser beam as a modulated carrier wave for radio signal?

Why doesn't Shulchan Aruch include the laws of destroying fruit trees?

Planeswalker Ability and Death Timing



Mathematical induction method



The Next CEO of Stack OverflowStrong Mathematical Induction: Why More than One Base Case?Prove by induction help?Formal definition of Mathematical Induction & Strong InductionHow can be done by the method of mathematical induction?Mathematical Induction - InequalityMathematical induction and pigeon-hole principleMathematical Induction with Sigma NotationLesson in an induction problemBy mathematical induction prove that?Chess table Mathematical Induction Problem










0












$begingroup$


In the method of induction we take for granted the proposition P(k) and we want to prove P(k+1). Can we start from P(k+1) and prove from that that P(k) is true, or is it a wrong practise?










share|cite|improve this question







New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    No, you need to show $P(k)implies P(k+1)$ or, which is equivalent, $neg P(k+1)impliesneg P(k)$. This valid variant on your invalid idea is related to a technique called infinite descent, in which we show $neg P(n)impliesexists k<n (neg P(k))$.
    $endgroup$
    – J.G.
    Mar 28 at 10:59







  • 1




    $begingroup$
    It is not "wrong practice", it proves something different.
    $endgroup$
    – Yves Daoust
    Mar 28 at 11:01















0












$begingroup$


In the method of induction we take for granted the proposition P(k) and we want to prove P(k+1). Can we start from P(k+1) and prove from that that P(k) is true, or is it a wrong practise?










share|cite|improve this question







New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    No, you need to show $P(k)implies P(k+1)$ or, which is equivalent, $neg P(k+1)impliesneg P(k)$. This valid variant on your invalid idea is related to a technique called infinite descent, in which we show $neg P(n)impliesexists k<n (neg P(k))$.
    $endgroup$
    – J.G.
    Mar 28 at 10:59







  • 1




    $begingroup$
    It is not "wrong practice", it proves something different.
    $endgroup$
    – Yves Daoust
    Mar 28 at 11:01













0












0








0


1



$begingroup$


In the method of induction we take for granted the proposition P(k) and we want to prove P(k+1). Can we start from P(k+1) and prove from that that P(k) is true, or is it a wrong practise?










share|cite|improve this question







New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




In the method of induction we take for granted the proposition P(k) and we want to prove P(k+1). Can we start from P(k+1) and prove from that that P(k) is true, or is it a wrong practise?







discrete-mathematics






share|cite|improve this question







New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Mar 28 at 10:51









Toni IvanovToni Ivanov

1




1




New contributor




Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Toni Ivanov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    No, you need to show $P(k)implies P(k+1)$ or, which is equivalent, $neg P(k+1)impliesneg P(k)$. This valid variant on your invalid idea is related to a technique called infinite descent, in which we show $neg P(n)impliesexists k<n (neg P(k))$.
    $endgroup$
    – J.G.
    Mar 28 at 10:59







  • 1




    $begingroup$
    It is not "wrong practice", it proves something different.
    $endgroup$
    – Yves Daoust
    Mar 28 at 11:01












  • 1




    $begingroup$
    No, you need to show $P(k)implies P(k+1)$ or, which is equivalent, $neg P(k+1)impliesneg P(k)$. This valid variant on your invalid idea is related to a technique called infinite descent, in which we show $neg P(n)impliesexists k<n (neg P(k))$.
    $endgroup$
    – J.G.
    Mar 28 at 10:59







  • 1




    $begingroup$
    It is not "wrong practice", it proves something different.
    $endgroup$
    – Yves Daoust
    Mar 28 at 11:01







1




1




$begingroup$
No, you need to show $P(k)implies P(k+1)$ or, which is equivalent, $neg P(k+1)impliesneg P(k)$. This valid variant on your invalid idea is related to a technique called infinite descent, in which we show $neg P(n)impliesexists k<n (neg P(k))$.
$endgroup$
– J.G.
Mar 28 at 10:59





$begingroup$
No, you need to show $P(k)implies P(k+1)$ or, which is equivalent, $neg P(k+1)impliesneg P(k)$. This valid variant on your invalid idea is related to a technique called infinite descent, in which we show $neg P(n)impliesexists k<n (neg P(k))$.
$endgroup$
– J.G.
Mar 28 at 10:59





1




1




$begingroup$
It is not "wrong practice", it proves something different.
$endgroup$
– Yves Daoust
Mar 28 at 11:01




$begingroup$
It is not "wrong practice", it proves something different.
$endgroup$
– Yves Daoust
Mar 28 at 11:01










3 Answers
3






active

oldest

votes


















2












$begingroup$

That is wrong. Suppose, for instance that $T(n)$ is $nleqslant1$. Then we have $T(1)$ (since it means that $1leqslant1$). Now, suppost that we have $T(k)$; in other words, $kleqslant 1$. But then $k-1<kleqslant1$ and so $k-1leqslant 1$. So, I proved that $T(k)implies T(k-1)$. But I hope that I don't think that$$(forall ninmathbb N):nleqslant1$$is true.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    It is wrong/useless. In mathematical induction you want to move forward, not backward.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      The principle of induction is



      • prove for some $k_0$;


      • prove that if true for $k$, then true for $k+1$.


      Combining these two pieces, the result is guaranteed true for



      $$k_0, k_0+1, k_0+2, k_0+3, cdots$$



      If you reverse the inductive argument, the result is guaranteed true for



      $$k_0, k_0-1, k_0-2, k_0-3, cdots$$



      Often, the statement to prove doesn't make sense for $k<0$ or $kle0$, and usually you want to prove for all $kge k_0$, not the other way.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        Toni Ivanov is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165732%2fmathematical-induction-method%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        That is wrong. Suppose, for instance that $T(n)$ is $nleqslant1$. Then we have $T(1)$ (since it means that $1leqslant1$). Now, suppost that we have $T(k)$; in other words, $kleqslant 1$. But then $k-1<kleqslant1$ and so $k-1leqslant 1$. So, I proved that $T(k)implies T(k-1)$. But I hope that I don't think that$$(forall ninmathbb N):nleqslant1$$is true.






        share|cite|improve this answer









        $endgroup$

















          2












          $begingroup$

          That is wrong. Suppose, for instance that $T(n)$ is $nleqslant1$. Then we have $T(1)$ (since it means that $1leqslant1$). Now, suppost that we have $T(k)$; in other words, $kleqslant 1$. But then $k-1<kleqslant1$ and so $k-1leqslant 1$. So, I proved that $T(k)implies T(k-1)$. But I hope that I don't think that$$(forall ninmathbb N):nleqslant1$$is true.






          share|cite|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            That is wrong. Suppose, for instance that $T(n)$ is $nleqslant1$. Then we have $T(1)$ (since it means that $1leqslant1$). Now, suppost that we have $T(k)$; in other words, $kleqslant 1$. But then $k-1<kleqslant1$ and so $k-1leqslant 1$. So, I proved that $T(k)implies T(k-1)$. But I hope that I don't think that$$(forall ninmathbb N):nleqslant1$$is true.






            share|cite|improve this answer









            $endgroup$



            That is wrong. Suppose, for instance that $T(n)$ is $nleqslant1$. Then we have $T(1)$ (since it means that $1leqslant1$). Now, suppost that we have $T(k)$; in other words, $kleqslant 1$. But then $k-1<kleqslant1$ and so $k-1leqslant 1$. So, I proved that $T(k)implies T(k-1)$. But I hope that I don't think that$$(forall ninmathbb N):nleqslant1$$is true.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 28 at 10:55









            José Carlos SantosJosé Carlos Santos

            171k23132240




            171k23132240





















                0












                $begingroup$

                It is wrong/useless. In mathematical induction you want to move forward, not backward.






                share|cite|improve this answer









                $endgroup$

















                  0












                  $begingroup$

                  It is wrong/useless. In mathematical induction you want to move forward, not backward.






                  share|cite|improve this answer









                  $endgroup$















                    0












                    0








                    0





                    $begingroup$

                    It is wrong/useless. In mathematical induction you want to move forward, not backward.






                    share|cite|improve this answer









                    $endgroup$



                    It is wrong/useless. In mathematical induction you want to move forward, not backward.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 28 at 10:54









                    PierreCarrePierreCarre

                    1,665212




                    1,665212





















                        0












                        $begingroup$

                        The principle of induction is



                        • prove for some $k_0$;


                        • prove that if true for $k$, then true for $k+1$.


                        Combining these two pieces, the result is guaranteed true for



                        $$k_0, k_0+1, k_0+2, k_0+3, cdots$$



                        If you reverse the inductive argument, the result is guaranteed true for



                        $$k_0, k_0-1, k_0-2, k_0-3, cdots$$



                        Often, the statement to prove doesn't make sense for $k<0$ or $kle0$, and usually you want to prove for all $kge k_0$, not the other way.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          The principle of induction is



                          • prove for some $k_0$;


                          • prove that if true for $k$, then true for $k+1$.


                          Combining these two pieces, the result is guaranteed true for



                          $$k_0, k_0+1, k_0+2, k_0+3, cdots$$



                          If you reverse the inductive argument, the result is guaranteed true for



                          $$k_0, k_0-1, k_0-2, k_0-3, cdots$$



                          Often, the statement to prove doesn't make sense for $k<0$ or $kle0$, and usually you want to prove for all $kge k_0$, not the other way.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            The principle of induction is



                            • prove for some $k_0$;


                            • prove that if true for $k$, then true for $k+1$.


                            Combining these two pieces, the result is guaranteed true for



                            $$k_0, k_0+1, k_0+2, k_0+3, cdots$$



                            If you reverse the inductive argument, the result is guaranteed true for



                            $$k_0, k_0-1, k_0-2, k_0-3, cdots$$



                            Often, the statement to prove doesn't make sense for $k<0$ or $kle0$, and usually you want to prove for all $kge k_0$, not the other way.






                            share|cite|improve this answer









                            $endgroup$



                            The principle of induction is



                            • prove for some $k_0$;


                            • prove that if true for $k$, then true for $k+1$.


                            Combining these two pieces, the result is guaranteed true for



                            $$k_0, k_0+1, k_0+2, k_0+3, cdots$$



                            If you reverse the inductive argument, the result is guaranteed true for



                            $$k_0, k_0-1, k_0-2, k_0-3, cdots$$



                            Often, the statement to prove doesn't make sense for $k<0$ or $kle0$, and usually you want to prove for all $kge k_0$, not the other way.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 28 at 10:59









                            Yves DaoustYves Daoust

                            131k676229




                            131k676229




















                                Toni Ivanov is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                Toni Ivanov is a new contributor. Be nice, and check out our Code of Conduct.












                                Toni Ivanov is a new contributor. Be nice, and check out our Code of Conduct.











                                Toni Ivanov is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165732%2fmathematical-induction-method%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                                Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu