Finite Morphisms of Affine Curves are Surjective The Next CEO of Stack OverflowStationary sequence of proper birational morphismsSimple questions about morphisms of finite type and proper morphismsCan a birational morphism surject from an affine to a projective variety?Can we recover étale, fpqc etc. morphisms of schemes from the affine versions?Reference request: Fibre functor for elliptic curves is pro-representableImage of finite locally free morphism is openConfusion about Vakil's proposition 17.4.5, on finite morphisms between curvesIntuition Behind, or Canonical Examples of Finite Type MorphismsFinite Morphisms ClosedFinite Dimensional $k$-Algebra has finitely many Maximal Ideals

Is a distribution that is normal, but highly skewed, considered Gaussian?

Could a dragon use its wings to swim?

Why does freezing point matter when picking cooler ice packs?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Man transported from Alternate World into ours by a Neutrino Detector

Prodigo = pro + ago?

How can I prove that a state of equilibrium is unstable?

Can a PhD from a non-TU9 German university become a professor in a TU9 university?

Strange use of "whether ... than ..." in official text

How should I connect my cat5 cable to connectors having an orange-green line?

That's an odd coin - I wonder why

Compilation of a 2d array and a 1d array

How exploitable/balanced is this homebrew spell: Spell Permanency?

Calculating discount not working

Car headlights in a world without electricity

Mathematica command that allows it to read my intentions

Direct Implications Between USA and UK in Event of No-Deal Brexit

Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?

Simplify trigonometric expression using trigonometric identities

Avoiding the "not like other girls" trope?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

"Eavesdropping" vs "Listen in on"

Salesforce opportunity stages

Is it a bad idea to plug the other end of ESD strap to wall ground?



Finite Morphisms of Affine Curves are Surjective



The Next CEO of Stack OverflowStationary sequence of proper birational morphismsSimple questions about morphisms of finite type and proper morphismsCan a birational morphism surject from an affine to a projective variety?Can we recover étale, fpqc etc. morphisms of schemes from the affine versions?Reference request: Fibre functor for elliptic curves is pro-representableImage of finite locally free morphism is openConfusion about Vakil's proposition 17.4.5, on finite morphisms between curvesIntuition Behind, or Canonical Examples of Finite Type MorphismsFinite Morphisms ClosedFinite Dimensional $k$-Algebra has finitely many Maximal Ideals










2












$begingroup$


I have a question about a step used in Szamuely's "Galois Groups and Fundamental Groups" in the excerpt below (see page 109):



enter image description here



The statement is that a finite morphism of integral affine curves is surjective.



Indeed I'm familar with some proofs to show this statement but the point I'm really interested is concretely the argument given in this source by the author.



He claims that the Case 2 of the proof of 4.3.5 cannot occure in the case of a finite morphism.



My question is why?



Here the proof of 4.3.5:



enter image description here










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Over an algebraically closed field, use that finite morphisms have finite fibers.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:02










  • $begingroup$
    @SamirCanning: if we asseme the case $2$ then we deduce following the proof of 4.3.5 that the map is a constant map and with your argument $Y$ (=preimage) is a finite set. This contradicts that $Y$ was assumed to be a curve. Do you mean this argument?
    $endgroup$
    – KarlPeter
    Mar 26 at 15:09











  • $begingroup$
    Yes that is what I mean.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:10















2












$begingroup$


I have a question about a step used in Szamuely's "Galois Groups and Fundamental Groups" in the excerpt below (see page 109):



enter image description here



The statement is that a finite morphism of integral affine curves is surjective.



Indeed I'm familar with some proofs to show this statement but the point I'm really interested is concretely the argument given in this source by the author.



He claims that the Case 2 of the proof of 4.3.5 cannot occure in the case of a finite morphism.



My question is why?



Here the proof of 4.3.5:



enter image description here










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Over an algebraically closed field, use that finite morphisms have finite fibers.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:02










  • $begingroup$
    @SamirCanning: if we asseme the case $2$ then we deduce following the proof of 4.3.5 that the map is a constant map and with your argument $Y$ (=preimage) is a finite set. This contradicts that $Y$ was assumed to be a curve. Do you mean this argument?
    $endgroup$
    – KarlPeter
    Mar 26 at 15:09











  • $begingroup$
    Yes that is what I mean.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:10













2












2








2





$begingroup$


I have a question about a step used in Szamuely's "Galois Groups and Fundamental Groups" in the excerpt below (see page 109):



enter image description here



The statement is that a finite morphism of integral affine curves is surjective.



Indeed I'm familar with some proofs to show this statement but the point I'm really interested is concretely the argument given in this source by the author.



He claims that the Case 2 of the proof of 4.3.5 cannot occure in the case of a finite morphism.



My question is why?



Here the proof of 4.3.5:



enter image description here










share|cite|improve this question











$endgroup$




I have a question about a step used in Szamuely's "Galois Groups and Fundamental Groups" in the excerpt below (see page 109):



enter image description here



The statement is that a finite morphism of integral affine curves is surjective.



Indeed I'm familar with some proofs to show this statement but the point I'm really interested is concretely the argument given in this source by the author.



He claims that the Case 2 of the proof of 4.3.5 cannot occure in the case of a finite morphism.



My question is why?



Here the proof of 4.3.5:



enter image description here







algebraic-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 26 at 15:02







KarlPeter

















asked Mar 26 at 14:50









KarlPeterKarlPeter

5911316




5911316







  • 1




    $begingroup$
    Over an algebraically closed field, use that finite morphisms have finite fibers.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:02










  • $begingroup$
    @SamirCanning: if we asseme the case $2$ then we deduce following the proof of 4.3.5 that the map is a constant map and with your argument $Y$ (=preimage) is a finite set. This contradicts that $Y$ was assumed to be a curve. Do you mean this argument?
    $endgroup$
    – KarlPeter
    Mar 26 at 15:09











  • $begingroup$
    Yes that is what I mean.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:10












  • 1




    $begingroup$
    Over an algebraically closed field, use that finite morphisms have finite fibers.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:02










  • $begingroup$
    @SamirCanning: if we asseme the case $2$ then we deduce following the proof of 4.3.5 that the map is a constant map and with your argument $Y$ (=preimage) is a finite set. This contradicts that $Y$ was assumed to be a curve. Do you mean this argument?
    $endgroup$
    – KarlPeter
    Mar 26 at 15:09











  • $begingroup$
    Yes that is what I mean.
    $endgroup$
    – Samir Canning
    Mar 26 at 15:10







1




1




$begingroup$
Over an algebraically closed field, use that finite morphisms have finite fibers.
$endgroup$
– Samir Canning
Mar 26 at 15:02




$begingroup$
Over an algebraically closed field, use that finite morphisms have finite fibers.
$endgroup$
– Samir Canning
Mar 26 at 15:02












$begingroup$
@SamirCanning: if we asseme the case $2$ then we deduce following the proof of 4.3.5 that the map is a constant map and with your argument $Y$ (=preimage) is a finite set. This contradicts that $Y$ was assumed to be a curve. Do you mean this argument?
$endgroup$
– KarlPeter
Mar 26 at 15:09





$begingroup$
@SamirCanning: if we asseme the case $2$ then we deduce following the proof of 4.3.5 that the map is a constant map and with your argument $Y$ (=preimage) is a finite set. This contradicts that $Y$ was assumed to be a curve. Do you mean this argument?
$endgroup$
– KarlPeter
Mar 26 at 15:09













$begingroup$
Yes that is what I mean.
$endgroup$
– Samir Canning
Mar 26 at 15:10




$begingroup$
Yes that is what I mean.
$endgroup$
– Samir Canning
Mar 26 at 15:10










1 Answer
1






active

oldest

votes


















2












$begingroup$

The argument in the book is too complicated:

A finite morphism of schemes is a closed map, hence the image of Y is closed and irreducible in $X$ and thus that image is equal to $X$.

By the way, my argument does not use that $X$ or $Y$ is affine, nor that $Y$ has dimension $1$!






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 9:54






  • 1




    $begingroup$
    how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
    $endgroup$
    – KarlPeter
    Mar 28 at 13:17






  • 1




    $begingroup$
    Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 14:52












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163273%2ffinite-morphisms-of-affine-curves-are-surjective%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The argument in the book is too complicated:

A finite morphism of schemes is a closed map, hence the image of Y is closed and irreducible in $X$ and thus that image is equal to $X$.

By the way, my argument does not use that $X$ or $Y$ is affine, nor that $Y$ has dimension $1$!






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 9:54






  • 1




    $begingroup$
    how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
    $endgroup$
    – KarlPeter
    Mar 28 at 13:17






  • 1




    $begingroup$
    Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 14:52
















2












$begingroup$

The argument in the book is too complicated:

A finite morphism of schemes is a closed map, hence the image of Y is closed and irreducible in $X$ and thus that image is equal to $X$.

By the way, my argument does not use that $X$ or $Y$ is affine, nor that $Y$ has dimension $1$!






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 9:54






  • 1




    $begingroup$
    how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
    $endgroup$
    – KarlPeter
    Mar 28 at 13:17






  • 1




    $begingroup$
    Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 14:52














2












2








2





$begingroup$

The argument in the book is too complicated:

A finite morphism of schemes is a closed map, hence the image of Y is closed and irreducible in $X$ and thus that image is equal to $X$.

By the way, my argument does not use that $X$ or $Y$ is affine, nor that $Y$ has dimension $1$!






share|cite|improve this answer









$endgroup$



The argument in the book is too complicated:

A finite morphism of schemes is a closed map, hence the image of Y is closed and irreducible in $X$ and thus that image is equal to $X$.

By the way, my argument does not use that $X$ or $Y$ is affine, nor that $Y$ has dimension $1$!







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 28 at 9:41









Georges ElencwajgGeorges Elencwajg

120k7181334




120k7181334







  • 1




    $begingroup$
    To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 9:54






  • 1




    $begingroup$
    how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
    $endgroup$
    – KarlPeter
    Mar 28 at 13:17






  • 1




    $begingroup$
    Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 14:52













  • 1




    $begingroup$
    To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 9:54






  • 1




    $begingroup$
    how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
    $endgroup$
    – KarlPeter
    Mar 28 at 13:17






  • 1




    $begingroup$
    Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
    $endgroup$
    – Georges Elencwajg
    Mar 28 at 14:52








1




1




$begingroup$
To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
$endgroup$
– Georges Elencwajg
Mar 28 at 9:54




$begingroup$
To prevent misunderstandings: I have only used that $Y$ is not a point (in order that its irreducible image not be a point in $X$) but in fact $Y$ must a posteriori have dimension one, because dimension is preserved under finite surjective morphisms.
$endgroup$
– Georges Elencwajg
Mar 28 at 9:54




1




1




$begingroup$
how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
$endgroup$
– KarlPeter
Mar 28 at 13:17




$begingroup$
how do you excluded that the given finite morphism isn't constant? I don't see how conclude that without using the fact that finite morphisms have finite fibers
$endgroup$
– KarlPeter
Mar 28 at 13:17




1




1




$begingroup$
Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
$endgroup$
– Georges Elencwajg
Mar 28 at 14:52





$begingroup$
Dear Karl, indeed you have to know that finite morphisms have finite fibers. By the way in algebraic geometry you have the completely general characterization for morphisms: finite = proper with finite fibers (The same result is also true for holomorphic morphisms between complex analytic varieties)
$endgroup$
– Georges Elencwajg
Mar 28 at 14:52


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163273%2ffinite-morphisms-of-affine-curves-are-surjective%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu