Show that the $Delta$-complex obtained from $Delta^3$ by performing edge identifications deformation retracts onto a Klein bottle. The Next CEO of Stack OverflowHatcher exercise 2.1.2 deformation retract of $Delta$-complex to Klein bottle by edge identificationsHatcher question: How to Cut and Glue from Tetrahedron to Klein BottleResources that explains “Cut and Glue” Technique for Delta Complex?Why does the letter $X$ deformation retract onto a point? (Hatcher's Algebraic Topology, Chapter 0, pg 2)Deformation Retraction to a pointIn homology, when we operate the boundary twice we get zero, that is, $partial^2=0$. Need help understanding proof.CW complexes - An algebraic Topology QuestionResources that explains “Cut and Glue” Technique for Delta Complex?Hatcher question: How to Cut and Glue from Tetrahedron to Klein BottleBook with Chapter on Fundamental PolygonsQuotient of a triangleHatcher exercise 2.1.2 deformation retract of $Delta$-complex to Klein bottle by edge identificationsUnderstanding the $Delta$-complex structure of a quotient space

Can this transistor (2N2222) take 6 V on emitter-base? Am I reading the datasheet incorrectly?

Is there a rule of thumb for determining the amount one should accept for a settlement offer?

Is it reasonable to ask other researchers to send me their previous grant applications?

My boss doesn't want me to have a side project

Strange use of "whether ... than ..." in official text

What steps are necessary to read a Modern SSD in Medieval Europe?

Is it okay to majorly distort historical facts while writing a fiction story?

Shortening a title without changing its meaning

Is a distribution that is normal, but highly skewed, considered Gaussian?

Creating a script with console commands

Free fall ellipse or parabola?

How to show a landlord what we have in savings?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

What difference does it make matching a word with/without a trailing whitespace?

Early programmable calculators with RS-232

Calculating discount not working

Can you teleport closer to a creature you are Frightened of?

Can a PhD from a non-TU9 German university become a professor in a TU9 university?

How seriously should I take size and weight limits of hand luggage?

How badly should I try to prevent a user from XSSing themselves?

How to coordinate airplane tickets?

Why does sin(x) - sin(y) equal this?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?



Show that the $Delta$-complex obtained from $Delta^3$ by performing edge identifications deformation retracts onto a Klein bottle.



The Next CEO of Stack OverflowHatcher exercise 2.1.2 deformation retract of $Delta$-complex to Klein bottle by edge identificationsHatcher question: How to Cut and Glue from Tetrahedron to Klein BottleResources that explains “Cut and Glue” Technique for Delta Complex?Why does the letter $X$ deformation retract onto a point? (Hatcher's Algebraic Topology, Chapter 0, pg 2)Deformation Retraction to a pointIn homology, when we operate the boundary twice we get zero, that is, $partial^2=0$. Need help understanding proof.CW complexes - An algebraic Topology QuestionResources that explains “Cut and Glue” Technique for Delta Complex?Hatcher question: How to Cut and Glue from Tetrahedron to Klein BottleBook with Chapter on Fundamental PolygonsQuotient of a triangleHatcher exercise 2.1.2 deformation retract of $Delta$-complex to Klein bottle by edge identificationsUnderstanding the $Delta$-complex structure of a quotient space










8












$begingroup$


I am going through some exercises in Hatcher's Algebraic Topology.
You have a $Delta$-complex obtained from $Delta^3$ (a tetrahedron) and perform edge identifications $[v_0,v_1]sim[v_1,v_3]$ and $[v_0,v_2]sim[v_2,v_3]$. How can you show that this deformation retracts onto a Klein bottle?










share|cite|improve this question











$endgroup$
















    8












    $begingroup$


    I am going through some exercises in Hatcher's Algebraic Topology.
    You have a $Delta$-complex obtained from $Delta^3$ (a tetrahedron) and perform edge identifications $[v_0,v_1]sim[v_1,v_3]$ and $[v_0,v_2]sim[v_2,v_3]$. How can you show that this deformation retracts onto a Klein bottle?










    share|cite|improve this question











    $endgroup$














      8












      8








      8


      3



      $begingroup$


      I am going through some exercises in Hatcher's Algebraic Topology.
      You have a $Delta$-complex obtained from $Delta^3$ (a tetrahedron) and perform edge identifications $[v_0,v_1]sim[v_1,v_3]$ and $[v_0,v_2]sim[v_2,v_3]$. How can you show that this deformation retracts onto a Klein bottle?










      share|cite|improve this question











      $endgroup$




      I am going through some exercises in Hatcher's Algebraic Topology.
      You have a $Delta$-complex obtained from $Delta^3$ (a tetrahedron) and perform edge identifications $[v_0,v_1]sim[v_1,v_3]$ and $[v_0,v_2]sim[v_2,v_3]$. How can you show that this deformation retracts onto a Klein bottle?







      algebraic-topology simplicial-complex






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 6 '18 at 9:51









      Batominovski

      33.1k33293




      33.1k33293










      asked Jan 18 '12 at 15:07









      0986709867

      294414




      294414




















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          The 3-simplex obviously deformation retracts onto the union of the surfaces obtained by $[v_0,v_1,v_3]$ and $[v_0,v_2,v_3]$. Note that the continuous image of a deformation retract, where the map identifies the points in the retract only, is still a deformation retract.






          share|cite|improve this answer











          $endgroup$




















            0












            $begingroup$

            flatten the tetrahedron and draw it in the plane (triangle with a vertex inside and edges going out to the vertices of the triangle). if you cut it up a little, you're looking at the standard "rectangle-with-sides-identified" picture of the klein bottle.

            sorry for the terrible picture, mspaint hasnt changed since 3.x as far as i can tell...



            edit: after "smooshing" the tetrahedron (set it on the table and press down), you have the first triangle. deforming away the black triangle gives the second picture (ignoring all the letters). we have $a=[v_0,v_1]=[v_1,v_3]$, $b=[v_0,v_2]=[v_2,v_3]$, and i'm introducing new edges $c$ and $d$. cutting the second triangle into two rectangles (both with edge labels $a,b,c,d$), then regluing along $a$ gives you a rectangle. this is the "standard" klein bottle.



            the left two rectangles are what you get by cutting the second triangle along $c,d$. the right two are supposed to indicate regluing along $a$, but there's a mistake in the labeling. (sorry i don't want to redraw a picture, i answered this like 5 years ago.)






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
              $endgroup$
              – NKS
              Jan 18 '12 at 16:50










            • $begingroup$
              Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
              $endgroup$
              – 09867
              Jan 18 '12 at 16:52










            • $begingroup$
              @NKS yes you do have to cut it up, my bad
              $endgroup$
              – yoyo
              Jan 18 '12 at 19:12










            • $begingroup$
              @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
              $endgroup$
              – yoyostein
              Jun 1 '16 at 9:28












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f100157%2fshow-that-the-delta-complex-obtained-from-delta3-by-performing-edge-ident%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            The 3-simplex obviously deformation retracts onto the union of the surfaces obtained by $[v_0,v_1,v_3]$ and $[v_0,v_2,v_3]$. Note that the continuous image of a deformation retract, where the map identifies the points in the retract only, is still a deformation retract.






            share|cite|improve this answer











            $endgroup$

















              0












              $begingroup$

              The 3-simplex obviously deformation retracts onto the union of the surfaces obtained by $[v_0,v_1,v_3]$ and $[v_0,v_2,v_3]$. Note that the continuous image of a deformation retract, where the map identifies the points in the retract only, is still a deformation retract.






              share|cite|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                The 3-simplex obviously deformation retracts onto the union of the surfaces obtained by $[v_0,v_1,v_3]$ and $[v_0,v_2,v_3]$. Note that the continuous image of a deformation retract, where the map identifies the points in the retract only, is still a deformation retract.






                share|cite|improve this answer











                $endgroup$



                The 3-simplex obviously deformation retracts onto the union of the surfaces obtained by $[v_0,v_1,v_3]$ and $[v_0,v_2,v_3]$. Note that the continuous image of a deformation retract, where the map identifies the points in the retract only, is still a deformation retract.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jul 3 '17 at 10:39

























                answered Jun 29 '17 at 14:22









                Ka HoKa Ho

                62




                62





















                    0












                    $begingroup$

                    flatten the tetrahedron and draw it in the plane (triangle with a vertex inside and edges going out to the vertices of the triangle). if you cut it up a little, you're looking at the standard "rectangle-with-sides-identified" picture of the klein bottle.

                    sorry for the terrible picture, mspaint hasnt changed since 3.x as far as i can tell...



                    edit: after "smooshing" the tetrahedron (set it on the table and press down), you have the first triangle. deforming away the black triangle gives the second picture (ignoring all the letters). we have $a=[v_0,v_1]=[v_1,v_3]$, $b=[v_0,v_2]=[v_2,v_3]$, and i'm introducing new edges $c$ and $d$. cutting the second triangle into two rectangles (both with edge labels $a,b,c,d$), then regluing along $a$ gives you a rectangle. this is the "standard" klein bottle.



                    the left two rectangles are what you get by cutting the second triangle along $c,d$. the right two are supposed to indicate regluing along $a$, but there's a mistake in the labeling. (sorry i don't want to redraw a picture, i answered this like 5 years ago.)






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
                      $endgroup$
                      – NKS
                      Jan 18 '12 at 16:50










                    • $begingroup$
                      Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
                      $endgroup$
                      – 09867
                      Jan 18 '12 at 16:52










                    • $begingroup$
                      @NKS yes you do have to cut it up, my bad
                      $endgroup$
                      – yoyo
                      Jan 18 '12 at 19:12










                    • $begingroup$
                      @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
                      $endgroup$
                      – yoyostein
                      Jun 1 '16 at 9:28
















                    0












                    $begingroup$

                    flatten the tetrahedron and draw it in the plane (triangle with a vertex inside and edges going out to the vertices of the triangle). if you cut it up a little, you're looking at the standard "rectangle-with-sides-identified" picture of the klein bottle.

                    sorry for the terrible picture, mspaint hasnt changed since 3.x as far as i can tell...



                    edit: after "smooshing" the tetrahedron (set it on the table and press down), you have the first triangle. deforming away the black triangle gives the second picture (ignoring all the letters). we have $a=[v_0,v_1]=[v_1,v_3]$, $b=[v_0,v_2]=[v_2,v_3]$, and i'm introducing new edges $c$ and $d$. cutting the second triangle into two rectangles (both with edge labels $a,b,c,d$), then regluing along $a$ gives you a rectangle. this is the "standard" klein bottle.



                    the left two rectangles are what you get by cutting the second triangle along $c,d$. the right two are supposed to indicate regluing along $a$, but there's a mistake in the labeling. (sorry i don't want to redraw a picture, i answered this like 5 years ago.)






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
                      $endgroup$
                      – NKS
                      Jan 18 '12 at 16:50










                    • $begingroup$
                      Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
                      $endgroup$
                      – 09867
                      Jan 18 '12 at 16:52










                    • $begingroup$
                      @NKS yes you do have to cut it up, my bad
                      $endgroup$
                      – yoyo
                      Jan 18 '12 at 19:12










                    • $begingroup$
                      @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
                      $endgroup$
                      – yoyostein
                      Jun 1 '16 at 9:28














                    0












                    0








                    0





                    $begingroup$

                    flatten the tetrahedron and draw it in the plane (triangle with a vertex inside and edges going out to the vertices of the triangle). if you cut it up a little, you're looking at the standard "rectangle-with-sides-identified" picture of the klein bottle.

                    sorry for the terrible picture, mspaint hasnt changed since 3.x as far as i can tell...



                    edit: after "smooshing" the tetrahedron (set it on the table and press down), you have the first triangle. deforming away the black triangle gives the second picture (ignoring all the letters). we have $a=[v_0,v_1]=[v_1,v_3]$, $b=[v_0,v_2]=[v_2,v_3]$, and i'm introducing new edges $c$ and $d$. cutting the second triangle into two rectangles (both with edge labels $a,b,c,d$), then regluing along $a$ gives you a rectangle. this is the "standard" klein bottle.



                    the left two rectangles are what you get by cutting the second triangle along $c,d$. the right two are supposed to indicate regluing along $a$, but there's a mistake in the labeling. (sorry i don't want to redraw a picture, i answered this like 5 years ago.)






                    share|cite|improve this answer











                    $endgroup$



                    flatten the tetrahedron and draw it in the plane (triangle with a vertex inside and edges going out to the vertices of the triangle). if you cut it up a little, you're looking at the standard "rectangle-with-sides-identified" picture of the klein bottle.

                    sorry for the terrible picture, mspaint hasnt changed since 3.x as far as i can tell...



                    edit: after "smooshing" the tetrahedron (set it on the table and press down), you have the first triangle. deforming away the black triangle gives the second picture (ignoring all the letters). we have $a=[v_0,v_1]=[v_1,v_3]$, $b=[v_0,v_2]=[v_2,v_3]$, and i'm introducing new edges $c$ and $d$. cutting the second triangle into two rectangles (both with edge labels $a,b,c,d$), then regluing along $a$ gives you a rectangle. this is the "standard" klein bottle.



                    the left two rectangles are what you get by cutting the second triangle along $c,d$. the right two are supposed to indicate regluing along $a$, but there's a mistake in the labeling. (sorry i don't want to redraw a picture, i answered this like 5 years ago.)







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Feb 22 at 19:13









                    Glorfindel

                    3,41581830




                    3,41581830










                    answered Jan 18 '12 at 16:09









                    yoyoyoyo

                    6,6211726




                    6,6211726











                    • $begingroup$
                      I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
                      $endgroup$
                      – NKS
                      Jan 18 '12 at 16:50










                    • $begingroup$
                      Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
                      $endgroup$
                      – 09867
                      Jan 18 '12 at 16:52










                    • $begingroup$
                      @NKS yes you do have to cut it up, my bad
                      $endgroup$
                      – yoyo
                      Jan 18 '12 at 19:12










                    • $begingroup$
                      @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
                      $endgroup$
                      – yoyostein
                      Jun 1 '16 at 9:28

















                    • $begingroup$
                      I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
                      $endgroup$
                      – NKS
                      Jan 18 '12 at 16:50










                    • $begingroup$
                      Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
                      $endgroup$
                      – 09867
                      Jan 18 '12 at 16:52










                    • $begingroup$
                      @NKS yes you do have to cut it up, my bad
                      $endgroup$
                      – yoyo
                      Jan 18 '12 at 19:12










                    • $begingroup$
                      @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
                      $endgroup$
                      – yoyostein
                      Jun 1 '16 at 9:28
















                    $begingroup$
                    I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
                    $endgroup$
                    – NKS
                    Jan 18 '12 at 16:50




                    $begingroup$
                    I remember from doing this exercise that the rectangle-with-sides-identified isn't quite the standard one (by which I mean pairs of opposite sides identified, one with a twist). The edge orientations that are specified by the delta-complex structure mean that you end up with something that needs a little cutting and gluing to see that it is your friendly ordinary klein bottle.
                    $endgroup$
                    – NKS
                    Jan 18 '12 at 16:50












                    $begingroup$
                    Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
                    $endgroup$
                    – 09867
                    Jan 18 '12 at 16:52




                    $begingroup$
                    Bit confused about how to go about the squishing of it. Whenever I try it doesn't get to the Klein bottle square.
                    $endgroup$
                    – 09867
                    Jan 18 '12 at 16:52












                    $begingroup$
                    @NKS yes you do have to cut it up, my bad
                    $endgroup$
                    – yoyo
                    Jan 18 '12 at 19:12




                    $begingroup$
                    @NKS yes you do have to cut it up, my bad
                    $endgroup$
                    – yoyo
                    Jan 18 '12 at 19:12












                    $begingroup$
                    @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
                    $endgroup$
                    – yoyostein
                    Jun 1 '16 at 9:28





                    $begingroup$
                    @yoyo May I ask what does the black shaded part represent? Also why is the vertex 0 in the center in the first diagram but not in the center for the larger second diagram? Thanks!
                    $endgroup$
                    – yoyostein
                    Jun 1 '16 at 9:28


















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f100157%2fshow-that-the-delta-complex-obtained-from-delta3-by-performing-edge-ident%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu