Different definition of continuity The Next CEO of Stack OverflowThe measure of the image of a set of measure zeroAbsolutely continuous function admits weak derivativeEquivalent definitions of absolutely continuous functionsDoes absolute continuity of $f$ on $[epsilon,1]$ and continuity at $f=0$ imply absolute continuity on $[0,1]$?Proof that continuous function respects sequential continuityIs $sqrtx, xin [0,1]$ absolutely continuous?Absolutely Continuous function using sums.A question about absolute continuityAbsolute continuity of increasing functions on an intervalEquivalence condition of Absolute Continuity
Does the Idaho Potato Commission associate potato skins with healthy eating?
Can you teleport closer to a creature you are Frightened of?
Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?
How to unfasten electrical subpanel attached with ramset
Is a linearly independent set whose span is dense a Schauder basis?
What steps are necessary to read a Modern SSD in Medieval Europe?
Gauss' Posthumous Publications?
What does this strange code stamp on my passport mean?
My boss doesn't want me to have a side project
Could you use a laser beam as a modulated carrier wave for radio signal?
Is it reasonable to ask other researchers to send me their previous grant applications?
How seriously should I take size and weight limits of hand luggage?
How badly should I try to prevent a user from XSSing themselves?
Creating a script with console commands
A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?
MT "will strike" & LXX "will watch carefully" (Gen 3:15)?
How should I connect my cat5 cable to connectors having an orange-green line?
Read/write a pipe-delimited file line by line with some simple text manipulation
Why does freezing point matter when picking cooler ice packs?
Prodigo = pro + ago?
pgfplots: How to draw a tangent graph below two others?
Car headlights in a world without electricity
Find a path from s to t using as few red nodes as possible
That's an odd coin - I wonder why
Different definition of continuity
The Next CEO of Stack OverflowThe measure of the image of a set of measure zeroAbsolutely continuous function admits weak derivativeEquivalent definitions of absolutely continuous functionsDoes absolute continuity of $f$ on $[epsilon,1]$ and continuity at $f=0$ imply absolute continuity on $[0,1]$?Proof that continuous function respects sequential continuityIs $sqrtx, xin [0,1]$ absolutely continuous?Absolutely Continuous function using sums.A question about absolute continuityAbsolute continuity of increasing functions on an intervalEquivalence condition of Absolute Continuity
$begingroup$
Condition: $f:Itomathbb R$ is continuous. For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon.$$
Is this condition a necessary or sufficient condition of absolution continuity? Note that the order of the logic identifiers has changed.
A function $f: I to mathbbR$ is absolutely continuous on an interval $I$ if for every $epsilon > 0$ there is a $delta > 0$ such that whenever a finite sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$ satisfies
$$ sum_k |y_k - x_k| < delta$$
then
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
real-analysis calculus limits analysis continuity
$endgroup$
add a comment |
$begingroup$
Condition: $f:Itomathbb R$ is continuous. For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon.$$
Is this condition a necessary or sufficient condition of absolution continuity? Note that the order of the logic identifiers has changed.
A function $f: I to mathbbR$ is absolutely continuous on an interval $I$ if for every $epsilon > 0$ there is a $delta > 0$ such that whenever a finite sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$ satisfies
$$ sum_k |y_k - x_k| < delta$$
then
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
real-analysis calculus limits analysis continuity
$endgroup$
add a comment |
$begingroup$
Condition: $f:Itomathbb R$ is continuous. For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon.$$
Is this condition a necessary or sufficient condition of absolution continuity? Note that the order of the logic identifiers has changed.
A function $f: I to mathbbR$ is absolutely continuous on an interval $I$ if for every $epsilon > 0$ there is a $delta > 0$ such that whenever a finite sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$ satisfies
$$ sum_k |y_k - x_k| < delta$$
then
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
real-analysis calculus limits analysis continuity
$endgroup$
Condition: $f:Itomathbb R$ is continuous. For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon.$$
Is this condition a necessary or sufficient condition of absolution continuity? Note that the order of the logic identifiers has changed.
A function $f: I to mathbbR$ is absolutely continuous on an interval $I$ if for every $epsilon > 0$ there is a $delta > 0$ such that whenever a finite sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$ satisfies
$$ sum_k |y_k - x_k| < delta$$
then
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
real-analysis calculus limits analysis continuity
real-analysis calculus limits analysis continuity
edited Mar 26 at 1:47
High GPA
asked Mar 25 at 8:19
High GPAHigh GPA
1,008421
1,008421
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Given any function $f:Itomathbb R$ (not necessarily continuous), the condition: For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
is trivially true.
Proof: Given any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, just choose $delta = frac12 sum_k |y_k - x_k|$. Then the condition $ sum_k |y_k - x_k| < delta$ will be false and so the implication "$ sum_k |y_k - x_k| < delta$
implies
$sum_k |f(y_k) - f(x_k)| < epsilon$" will be trivially true.
So this conditionis not sufficient for absolute continuity or even continuity.
$endgroup$
1
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
add a comment |
$begingroup$
Yes, they are equivalent. Suppose you choose $delta$ according to the usual definition of absolute continuity with $epsilon$ repalced by $epsilon /2$. If $(a_k.b_k)$ is a disjoint sequence of interval with total length less than $delta$ then $sumlimits_k=1^N |f(b_k)-f(a_k)| < epsilon /2$ for each $N$. Let $N to infty$ to complete the proof.
$endgroup$
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161508%2fdifferent-definition-of-continuity%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Given any function $f:Itomathbb R$ (not necessarily continuous), the condition: For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
is trivially true.
Proof: Given any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, just choose $delta = frac12 sum_k |y_k - x_k|$. Then the condition $ sum_k |y_k - x_k| < delta$ will be false and so the implication "$ sum_k |y_k - x_k| < delta$
implies
$sum_k |f(y_k) - f(x_k)| < epsilon$" will be trivially true.
So this conditionis not sufficient for absolute continuity or even continuity.
$endgroup$
1
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
add a comment |
$begingroup$
Given any function $f:Itomathbb R$ (not necessarily continuous), the condition: For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
is trivially true.
Proof: Given any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, just choose $delta = frac12 sum_k |y_k - x_k|$. Then the condition $ sum_k |y_k - x_k| < delta$ will be false and so the implication "$ sum_k |y_k - x_k| < delta$
implies
$sum_k |f(y_k) - f(x_k)| < epsilon$" will be trivially true.
So this conditionis not sufficient for absolute continuity or even continuity.
$endgroup$
1
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
add a comment |
$begingroup$
Given any function $f:Itomathbb R$ (not necessarily continuous), the condition: For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
is trivially true.
Proof: Given any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, just choose $delta = frac12 sum_k |y_k - x_k|$. Then the condition $ sum_k |y_k - x_k| < delta$ will be false and so the implication "$ sum_k |y_k - x_k| < delta$
implies
$sum_k |f(y_k) - f(x_k)| < epsilon$" will be trivially true.
So this conditionis not sufficient for absolute continuity or even continuity.
$endgroup$
Given any function $f:Itomathbb R$ (not necessarily continuous), the condition: For any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, we have $forallepsilonexistsdelta$ such that $$ sum_k |y_k - x_k| < delta$$
implies
$$sum_k |f(y_k) - f(x_k)| < epsilon$$
is trivially true.
Proof: Given any countable sequence of pairwise disjoint sub-intervals $(x_k, y_k)$ of $I$, just choose $delta = frac12 sum_k |y_k - x_k|$. Then the condition $ sum_k |y_k - x_k| < delta$ will be false and so the implication "$ sum_k |y_k - x_k| < delta$
implies
$sum_k |f(y_k) - f(x_k)| < epsilon$" will be trivially true.
So this conditionis not sufficient for absolute continuity or even continuity.
answered Mar 28 at 10:31
RamiroRamiro
7,32421535
7,32421535
1
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
add a comment |
1
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
1
1
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
$begingroup$
Yes, I also saw this after you gave the detailed explanation in the other question
$endgroup$
– High GPA
Mar 28 at 22:25
add a comment |
$begingroup$
Yes, they are equivalent. Suppose you choose $delta$ according to the usual definition of absolute continuity with $epsilon$ repalced by $epsilon /2$. If $(a_k.b_k)$ is a disjoint sequence of interval with total length less than $delta$ then $sumlimits_k=1^N |f(b_k)-f(a_k)| < epsilon /2$ for each $N$. Let $N to infty$ to complete the proof.
$endgroup$
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
add a comment |
$begingroup$
Yes, they are equivalent. Suppose you choose $delta$ according to the usual definition of absolute continuity with $epsilon$ repalced by $epsilon /2$. If $(a_k.b_k)$ is a disjoint sequence of interval with total length less than $delta$ then $sumlimits_k=1^N |f(b_k)-f(a_k)| < epsilon /2$ for each $N$. Let $N to infty$ to complete the proof.
$endgroup$
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
add a comment |
$begingroup$
Yes, they are equivalent. Suppose you choose $delta$ according to the usual definition of absolute continuity with $epsilon$ repalced by $epsilon /2$. If $(a_k.b_k)$ is a disjoint sequence of interval with total length less than $delta$ then $sumlimits_k=1^N |f(b_k)-f(a_k)| < epsilon /2$ for each $N$. Let $N to infty$ to complete the proof.
$endgroup$
Yes, they are equivalent. Suppose you choose $delta$ according to the usual definition of absolute continuity with $epsilon$ repalced by $epsilon /2$. If $(a_k.b_k)$ is a disjoint sequence of interval with total length less than $delta$ then $sumlimits_k=1^N |f(b_k)-f(a_k)| < epsilon /2$ for each $N$. Let $N to infty$ to complete the proof.
answered Mar 25 at 8:24
Kavi Rama MurthyKavi Rama Murthy
71.5k53170
71.5k53170
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
add a comment |
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
$begingroup$
Many thanks for your teaching! So you proved that the definition "$forallepsilonexistsdelta(forall textfinite subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$" is equivalent to "$forallepsilonexistsdelta(forall textcountable subintervals we have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". However, my first condition means "$forall textcountable subintervals(forallepsilonexistsdelta textwe have (sum|y_k-x_k|<delta Rightarrow sum|f(y_k)-f(x_k)|<epsilon))$". Not sure my understanding is correct, though.
$endgroup$
– High GPA
Mar 25 at 22:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161508%2fdifferent-definition-of-continuity%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown