Taylor series of complex multivariate function Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)First four Taylor Series ExpansionsTaylor series of $1/|r - R - x|$Is there a faster convergence series than the Taylor series?Power series proof without TaylorTaylor Expansion Multivariate analysisUnivariate Taylor expansion of a multivariate function?Relation between Taylor Expansion and multivariate Gaussian DistributionWhat is the difference between a Taylor series, Taylor polynomial, analytic function and a quadradic approximation?Taylor Series expansion of an implicitly defined function $x^2 +y^2=y, y(0)=0$Taylor series of a complex Gaussian function

What helicopter has the most rotor blades?

RM anova or Factorial Anova?

Short story about astronauts fertilizing soil with their own bodies

Can anyone explain what's the meaning of this in the new Game of Thrones opening animations?

What's the connection between Mr. Nancy and fried chicken?

How to ask rejected full-time candidates to apply to teach individual courses?

Why doesn't the university give past final exams' answers?

Why is there so little support for joining EFTA in the British parliament?

How can I introduce the names of fantasy creatures to the reader?

Is honorific speech ever used in the first person?

Reflections in a Square

How can I list files in reverse time order by a command and pass them as arguments to another command?

malloc in main() or malloc in another function: allocating memory for a struct and its members

What should one know about term logic before studying propositional and predicate logic?

Do British people often use the word lightning conductor?

Is there night in Alpha Complex?

Is my guitar action too high?

Can I take recommendation from someone I met at a conference?

Marquee sign letters

Lemmatization Vs Stemming

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

How to name indistinguishable henchmen in a screenplay?

No invitation for tourist visa but I want to visit

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?



Taylor series of complex multivariate function



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)First four Taylor Series ExpansionsTaylor series of $1/|r - R - x|$Is there a faster convergence series than the Taylor series?Power series proof without TaylorTaylor Expansion Multivariate analysisUnivariate Taylor expansion of a multivariate function?Relation between Taylor Expansion and multivariate Gaussian DistributionWhat is the difference between a Taylor series, Taylor polynomial, analytic function and a quadradic approximation?Taylor Series expansion of an implicitly defined function $x^2 +y^2=y, y(0)=0$Taylor series of a complex Gaussian function










0












$begingroup$


I am looking for a reference or some literature on Taylor series of complex multivariate functions. I found material for complex functions and material for multivariate functions, but not for both.



Is there an expression for at least the 2 or 3 first terms of the Taylor expansion of a function $f: mathbbC^n rightarrow mathbbC$?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Fix all but one of the variables. Expand a taylor polynomial in that variable. Each of its coefficients is now a function of $n-1$ variables. Expand each of the coefficient functions about the next variable, holding the others constant. Keep this up and you end up with the multivariate taylor polynomial.
    $endgroup$
    – Paul Sinclair
    Apr 3 at 0:50















0












$begingroup$


I am looking for a reference or some literature on Taylor series of complex multivariate functions. I found material for complex functions and material for multivariate functions, but not for both.



Is there an expression for at least the 2 or 3 first terms of the Taylor expansion of a function $f: mathbbC^n rightarrow mathbbC$?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Fix all but one of the variables. Expand a taylor polynomial in that variable. Each of its coefficients is now a function of $n-1$ variables. Expand each of the coefficient functions about the next variable, holding the others constant. Keep this up and you end up with the multivariate taylor polynomial.
    $endgroup$
    – Paul Sinclair
    Apr 3 at 0:50













0












0








0


1



$begingroup$


I am looking for a reference or some literature on Taylor series of complex multivariate functions. I found material for complex functions and material for multivariate functions, but not for both.



Is there an expression for at least the 2 or 3 first terms of the Taylor expansion of a function $f: mathbbC^n rightarrow mathbbC$?










share|cite|improve this question









$endgroup$




I am looking for a reference or some literature on Taylor series of complex multivariate functions. I found material for complex functions and material for multivariate functions, but not for both.



Is there an expression for at least the 2 or 3 first terms of the Taylor expansion of a function $f: mathbbC^n rightarrow mathbbC$?







taylor-expansion several-complex-variables






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 2 at 17:31









OpticAlOpticAl

959




959











  • $begingroup$
    Fix all but one of the variables. Expand a taylor polynomial in that variable. Each of its coefficients is now a function of $n-1$ variables. Expand each of the coefficient functions about the next variable, holding the others constant. Keep this up and you end up with the multivariate taylor polynomial.
    $endgroup$
    – Paul Sinclair
    Apr 3 at 0:50
















  • $begingroup$
    Fix all but one of the variables. Expand a taylor polynomial in that variable. Each of its coefficients is now a function of $n-1$ variables. Expand each of the coefficient functions about the next variable, holding the others constant. Keep this up and you end up with the multivariate taylor polynomial.
    $endgroup$
    – Paul Sinclair
    Apr 3 at 0:50















$begingroup$
Fix all but one of the variables. Expand a taylor polynomial in that variable. Each of its coefficients is now a function of $n-1$ variables. Expand each of the coefficient functions about the next variable, holding the others constant. Keep this up and you end up with the multivariate taylor polynomial.
$endgroup$
– Paul Sinclair
Apr 3 at 0:50




$begingroup$
Fix all but one of the variables. Expand a taylor polynomial in that variable. Each of its coefficients is now a function of $n-1$ variables. Expand each of the coefficient functions about the next variable, holding the others constant. Keep this up and you end up with the multivariate taylor polynomial.
$endgroup$
– Paul Sinclair
Apr 3 at 0:50










2 Answers
2






active

oldest

votes


















0












$begingroup$

If you're looking for a graduate course: http://www.jirka.org/scv/






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    I'll take a stab at it blending the two concepts together.



    In a single complex variable we have $f(z)=a(x,y)+ib(x,y)$ where $z=x+iy$.



    Suppose we have two complex variables.



    Then I'd guess: $f(z_1,z_2)=a(x_1,x_2,y_1,y_2)+ib(x_1,x_2,y_1,y_2)$



    Before we worry about a Taylor series, we need some condition for testing analysity.



    In the single complex variable case, we have some conditions. We want the derivative tweaking just the real component to give us the derivative tweaking just the imaginary component.



    So: $fraca(x+Delta x,y)+ib(x+Delta x, y)-a(x,y)-ib(x,y)Delta x=fraca(x,y+Delta y) + i b(x, y+ Delta y)-a(x,y)-ib(x,y)iDelta y$



    Then we equat real and imaginary parts:



    $fracpartial apartial x+ifracpartial bpartial x=(-i)(fracpartial apartial y+ifracpartial bpartial y)$



    So we get :



    $fracpartial apartial x=fracpartial bpartial y$



    $fracpartial bpartial x=-fracpartial apartial y$



    By similar reasoning, I think we need:



    $fracpartial apartial x_1=fracpartial bpartial y_1$



    $fracpartial bpartial x_1=-fracpartial apartial y_1$



    $fracpartial apartial x_2=fracpartial bpartial y_2$



    $fracpartial bpartial x_2=-fracpartial apartial y_2$



    $fracpartial apartial x_1=fracpartial apartial x_2$



    $fracpartial bpartial x_1=fracpartial bpartial x_2$



    $fracpartial bpartial y_1=fracpartial bpartial y_2$



    $fracpartial apartial y_1=fracpartial apartial y_2$



    If those criteria are satisfied, then I think we can proceed with a Taylor series.



    $f(z_1,z_2)=f(x_10,x_20,y_10, y_20)+fracpartial apartial x_1Delta x_1 +ifracpartial bpartial x_1Delta x_1+fracpartial apartial x_2Delta x_2+ fracpartial bpartial y_1Delta y_1 - i fracpartial apartial y_1+... + fracpartial^2 apartial x_1^2Delta x_1^2+... $



    I believe you proceed in the usual way for multivariable functions just keeping in mind which terms need the imaginary unit. An x derivative of the real part of the function and a y derivative of the imaginary part do not need the imaginary units. The others do.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172157%2ftaylor-series-of-complex-multivariate-function%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      If you're looking for a graduate course: http://www.jirka.org/scv/






      share|cite|improve this answer









      $endgroup$

















        0












        $begingroup$

        If you're looking for a graduate course: http://www.jirka.org/scv/






        share|cite|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$

          If you're looking for a graduate course: http://www.jirka.org/scv/






          share|cite|improve this answer









          $endgroup$



          If you're looking for a graduate course: http://www.jirka.org/scv/







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 3 at 15:52









          Jiri LeblJiri Lebl

          1,683412




          1,683412





















              0












              $begingroup$

              I'll take a stab at it blending the two concepts together.



              In a single complex variable we have $f(z)=a(x,y)+ib(x,y)$ where $z=x+iy$.



              Suppose we have two complex variables.



              Then I'd guess: $f(z_1,z_2)=a(x_1,x_2,y_1,y_2)+ib(x_1,x_2,y_1,y_2)$



              Before we worry about a Taylor series, we need some condition for testing analysity.



              In the single complex variable case, we have some conditions. We want the derivative tweaking just the real component to give us the derivative tweaking just the imaginary component.



              So: $fraca(x+Delta x,y)+ib(x+Delta x, y)-a(x,y)-ib(x,y)Delta x=fraca(x,y+Delta y) + i b(x, y+ Delta y)-a(x,y)-ib(x,y)iDelta y$



              Then we equat real and imaginary parts:



              $fracpartial apartial x+ifracpartial bpartial x=(-i)(fracpartial apartial y+ifracpartial bpartial y)$



              So we get :



              $fracpartial apartial x=fracpartial bpartial y$



              $fracpartial bpartial x=-fracpartial apartial y$



              By similar reasoning, I think we need:



              $fracpartial apartial x_1=fracpartial bpartial y_1$



              $fracpartial bpartial x_1=-fracpartial apartial y_1$



              $fracpartial apartial x_2=fracpartial bpartial y_2$



              $fracpartial bpartial x_2=-fracpartial apartial y_2$



              $fracpartial apartial x_1=fracpartial apartial x_2$



              $fracpartial bpartial x_1=fracpartial bpartial x_2$



              $fracpartial bpartial y_1=fracpartial bpartial y_2$



              $fracpartial apartial y_1=fracpartial apartial y_2$



              If those criteria are satisfied, then I think we can proceed with a Taylor series.



              $f(z_1,z_2)=f(x_10,x_20,y_10, y_20)+fracpartial apartial x_1Delta x_1 +ifracpartial bpartial x_1Delta x_1+fracpartial apartial x_2Delta x_2+ fracpartial bpartial y_1Delta y_1 - i fracpartial apartial y_1+... + fracpartial^2 apartial x_1^2Delta x_1^2+... $



              I believe you proceed in the usual way for multivariable functions just keeping in mind which terms need the imaginary unit. An x derivative of the real part of the function and a y derivative of the imaginary part do not need the imaginary units. The others do.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                I'll take a stab at it blending the two concepts together.



                In a single complex variable we have $f(z)=a(x,y)+ib(x,y)$ where $z=x+iy$.



                Suppose we have two complex variables.



                Then I'd guess: $f(z_1,z_2)=a(x_1,x_2,y_1,y_2)+ib(x_1,x_2,y_1,y_2)$



                Before we worry about a Taylor series, we need some condition for testing analysity.



                In the single complex variable case, we have some conditions. We want the derivative tweaking just the real component to give us the derivative tweaking just the imaginary component.



                So: $fraca(x+Delta x,y)+ib(x+Delta x, y)-a(x,y)-ib(x,y)Delta x=fraca(x,y+Delta y) + i b(x, y+ Delta y)-a(x,y)-ib(x,y)iDelta y$



                Then we equat real and imaginary parts:



                $fracpartial apartial x+ifracpartial bpartial x=(-i)(fracpartial apartial y+ifracpartial bpartial y)$



                So we get :



                $fracpartial apartial x=fracpartial bpartial y$



                $fracpartial bpartial x=-fracpartial apartial y$



                By similar reasoning, I think we need:



                $fracpartial apartial x_1=fracpartial bpartial y_1$



                $fracpartial bpartial x_1=-fracpartial apartial y_1$



                $fracpartial apartial x_2=fracpartial bpartial y_2$



                $fracpartial bpartial x_2=-fracpartial apartial y_2$



                $fracpartial apartial x_1=fracpartial apartial x_2$



                $fracpartial bpartial x_1=fracpartial bpartial x_2$



                $fracpartial bpartial y_1=fracpartial bpartial y_2$



                $fracpartial apartial y_1=fracpartial apartial y_2$



                If those criteria are satisfied, then I think we can proceed with a Taylor series.



                $f(z_1,z_2)=f(x_10,x_20,y_10, y_20)+fracpartial apartial x_1Delta x_1 +ifracpartial bpartial x_1Delta x_1+fracpartial apartial x_2Delta x_2+ fracpartial bpartial y_1Delta y_1 - i fracpartial apartial y_1+... + fracpartial^2 apartial x_1^2Delta x_1^2+... $



                I believe you proceed in the usual way for multivariable functions just keeping in mind which terms need the imaginary unit. An x derivative of the real part of the function and a y derivative of the imaginary part do not need the imaginary units. The others do.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  I'll take a stab at it blending the two concepts together.



                  In a single complex variable we have $f(z)=a(x,y)+ib(x,y)$ where $z=x+iy$.



                  Suppose we have two complex variables.



                  Then I'd guess: $f(z_1,z_2)=a(x_1,x_2,y_1,y_2)+ib(x_1,x_2,y_1,y_2)$



                  Before we worry about a Taylor series, we need some condition for testing analysity.



                  In the single complex variable case, we have some conditions. We want the derivative tweaking just the real component to give us the derivative tweaking just the imaginary component.



                  So: $fraca(x+Delta x,y)+ib(x+Delta x, y)-a(x,y)-ib(x,y)Delta x=fraca(x,y+Delta y) + i b(x, y+ Delta y)-a(x,y)-ib(x,y)iDelta y$



                  Then we equat real and imaginary parts:



                  $fracpartial apartial x+ifracpartial bpartial x=(-i)(fracpartial apartial y+ifracpartial bpartial y)$



                  So we get :



                  $fracpartial apartial x=fracpartial bpartial y$



                  $fracpartial bpartial x=-fracpartial apartial y$



                  By similar reasoning, I think we need:



                  $fracpartial apartial x_1=fracpartial bpartial y_1$



                  $fracpartial bpartial x_1=-fracpartial apartial y_1$



                  $fracpartial apartial x_2=fracpartial bpartial y_2$



                  $fracpartial bpartial x_2=-fracpartial apartial y_2$



                  $fracpartial apartial x_1=fracpartial apartial x_2$



                  $fracpartial bpartial x_1=fracpartial bpartial x_2$



                  $fracpartial bpartial y_1=fracpartial bpartial y_2$



                  $fracpartial apartial y_1=fracpartial apartial y_2$



                  If those criteria are satisfied, then I think we can proceed with a Taylor series.



                  $f(z_1,z_2)=f(x_10,x_20,y_10, y_20)+fracpartial apartial x_1Delta x_1 +ifracpartial bpartial x_1Delta x_1+fracpartial apartial x_2Delta x_2+ fracpartial bpartial y_1Delta y_1 - i fracpartial apartial y_1+... + fracpartial^2 apartial x_1^2Delta x_1^2+... $



                  I believe you proceed in the usual way for multivariable functions just keeping in mind which terms need the imaginary unit. An x derivative of the real part of the function and a y derivative of the imaginary part do not need the imaginary units. The others do.






                  share|cite|improve this answer









                  $endgroup$



                  I'll take a stab at it blending the two concepts together.



                  In a single complex variable we have $f(z)=a(x,y)+ib(x,y)$ where $z=x+iy$.



                  Suppose we have two complex variables.



                  Then I'd guess: $f(z_1,z_2)=a(x_1,x_2,y_1,y_2)+ib(x_1,x_2,y_1,y_2)$



                  Before we worry about a Taylor series, we need some condition for testing analysity.



                  In the single complex variable case, we have some conditions. We want the derivative tweaking just the real component to give us the derivative tweaking just the imaginary component.



                  So: $fraca(x+Delta x,y)+ib(x+Delta x, y)-a(x,y)-ib(x,y)Delta x=fraca(x,y+Delta y) + i b(x, y+ Delta y)-a(x,y)-ib(x,y)iDelta y$



                  Then we equat real and imaginary parts:



                  $fracpartial apartial x+ifracpartial bpartial x=(-i)(fracpartial apartial y+ifracpartial bpartial y)$



                  So we get :



                  $fracpartial apartial x=fracpartial bpartial y$



                  $fracpartial bpartial x=-fracpartial apartial y$



                  By similar reasoning, I think we need:



                  $fracpartial apartial x_1=fracpartial bpartial y_1$



                  $fracpartial bpartial x_1=-fracpartial apartial y_1$



                  $fracpartial apartial x_2=fracpartial bpartial y_2$



                  $fracpartial bpartial x_2=-fracpartial apartial y_2$



                  $fracpartial apartial x_1=fracpartial apartial x_2$



                  $fracpartial bpartial x_1=fracpartial bpartial x_2$



                  $fracpartial bpartial y_1=fracpartial bpartial y_2$



                  $fracpartial apartial y_1=fracpartial apartial y_2$



                  If those criteria are satisfied, then I think we can proceed with a Taylor series.



                  $f(z_1,z_2)=f(x_10,x_20,y_10, y_20)+fracpartial apartial x_1Delta x_1 +ifracpartial bpartial x_1Delta x_1+fracpartial apartial x_2Delta x_2+ fracpartial bpartial y_1Delta y_1 - i fracpartial apartial y_1+... + fracpartial^2 apartial x_1^2Delta x_1^2+... $



                  I believe you proceed in the usual way for multivariable functions just keeping in mind which terms need the imaginary unit. An x derivative of the real part of the function and a y derivative of the imaginary part do not need the imaginary units. The others do.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 3 at 17:24









                  TurlocTheRedTurlocTheRed

                  1,034411




                  1,034411



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172157%2ftaylor-series-of-complex-multivariate-function%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu