Let X and Y two independent random variables with exponential distribution of parameter a>0. U = X+ Y and V = X- Y are not independent Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Properties of characteristic functionsBernoulli distribution: expectation problem with independent random variablesCharacteristic function of seriesIf $X_1,X_2,X$ are iid random variables with $X_1+X_2$ has the distribution of $aX$, find all characteristic functions of $X$.Prove that $X,Y$ are independent iff the characteristic function of $(X,Y)$ equals the product of the characteristic functions of $X$ and $Y$Prove that random variables are independentFind the distribution of the average of exponential random variablesDifference between two iid random variables is not uniformly distributedFinding a characteristic function of a product of two normal random variablesLet $X,Y $ be two independent random variables with exponential distribution and parameter $lambda > 0$.Characteristic function of independent Poisson random variables

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

How to name indistinguishable henchmen in a screenplay?

Is the Mordenkainen's Sword spell underpowered?

Why is there so little support for joining EFTA in the British parliament?

Is a copyright notice with a non-existent name be invalid?

What could prevent concentrated local exploration?

Understanding piped commands in GNU/Linux

Do British people often use the word lightning conductor?

Random body shuffle every night—can we still function?

As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?

Fit odd number of triplets in a measure?

Can gravitational waves pass through a black hole?

Can I cut the hair of a conjured korred with a blade made of precious material to harvest that material from the korred?

Is it OK if I do not take the receipt in Germany?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Why is Rajasthan pro BJP in the LS elections but not in the state elections?

Question on Gÿongy' lemma proof

Pointing to problems without suggesting solutions

Trying to enter the Fox's den

Is it possible to intall libXft.so.2 on WSL?

Fourth cup after starting Nirtzah

Is there night in Alpha Complex?

Can a Knight grant Knighthood to another?



Let X and Y two independent random variables with exponential distribution of parameter a>0. U = X+ Y and V = X- Y are not independent



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Properties of characteristic functionsBernoulli distribution: expectation problem with independent random variablesCharacteristic function of seriesIf $X_1,X_2,X$ are iid random variables with $X_1+X_2$ has the distribution of $aX$, find all characteristic functions of $X$.Prove that $X,Y$ are independent iff the characteristic function of $(X,Y)$ equals the product of the characteristic functions of $X$ and $Y$Prove that random variables are independentFind the distribution of the average of exponential random variablesDifference between two iid random variables is not uniformly distributedFinding a characteristic function of a product of two normal random variablesLet $X,Y $ be two independent random variables with exponential distribution and parameter $lambda > 0$.Characteristic function of independent Poisson random variables










1












$begingroup$


Let X and Y two independent random variables with exponential distribution of parameter a>0.
Proof using characteristic functions, that U = X+ Y and V = X- Y are not independent.



1) I calculate the characteristic function of X and Y (is the same)



$varphi_X(t)$ = $varphi_Y(t)$=$left( 1- fracita right)^left( -1 right)$



2) I know that $varphi_left( X+Y right) (t)=varphi_X(t).varphi_Y(t)$, if X and Y are independent, that is:



$varphi_U(t)$=$varphi_left( X+Y right) (t)=left( 1- fracita right)^left( -2 right)$



3) I know that $varphi_left(-Y right) (t)=barvarphi_Y(t))$, where $barvarphi_Y(t))$, is the complex conjugate of $varphi_Y(t))$



4) I calculate $varphi_V(t)$=$varphi_left( X-Y right) (t)=varphi_X(t).barvarphi_Y(t)$



5) How can I proof that U and V are not independent?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    You need to work out a formula for the joint characteristic function of $(U,V)$, that is, $phi(s,t)=Eexp( sU +tV)$.
    $endgroup$
    – kimchi lover
    Apr 2 at 18:16










  • $begingroup$
    I never work with a join characteristic function. The teacher has not taught us how to do it, has not done exercises about it and it is not in the given notes. Is there another way to do it?
    $endgroup$
    – Maria
    Apr 2 at 18:35











  • $begingroup$
    I never work with a join characteristic function with characteristic functions.
    $endgroup$
    – Maria
    Apr 2 at 18:37















1












$begingroup$


Let X and Y two independent random variables with exponential distribution of parameter a>0.
Proof using characteristic functions, that U = X+ Y and V = X- Y are not independent.



1) I calculate the characteristic function of X and Y (is the same)



$varphi_X(t)$ = $varphi_Y(t)$=$left( 1- fracita right)^left( -1 right)$



2) I know that $varphi_left( X+Y right) (t)=varphi_X(t).varphi_Y(t)$, if X and Y are independent, that is:



$varphi_U(t)$=$varphi_left( X+Y right) (t)=left( 1- fracita right)^left( -2 right)$



3) I know that $varphi_left(-Y right) (t)=barvarphi_Y(t))$, where $barvarphi_Y(t))$, is the complex conjugate of $varphi_Y(t))$



4) I calculate $varphi_V(t)$=$varphi_left( X-Y right) (t)=varphi_X(t).barvarphi_Y(t)$



5) How can I proof that U and V are not independent?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    You need to work out a formula for the joint characteristic function of $(U,V)$, that is, $phi(s,t)=Eexp( sU +tV)$.
    $endgroup$
    – kimchi lover
    Apr 2 at 18:16










  • $begingroup$
    I never work with a join characteristic function. The teacher has not taught us how to do it, has not done exercises about it and it is not in the given notes. Is there another way to do it?
    $endgroup$
    – Maria
    Apr 2 at 18:35











  • $begingroup$
    I never work with a join characteristic function with characteristic functions.
    $endgroup$
    – Maria
    Apr 2 at 18:37













1












1








1





$begingroup$


Let X and Y two independent random variables with exponential distribution of parameter a>0.
Proof using characteristic functions, that U = X+ Y and V = X- Y are not independent.



1) I calculate the characteristic function of X and Y (is the same)



$varphi_X(t)$ = $varphi_Y(t)$=$left( 1- fracita right)^left( -1 right)$



2) I know that $varphi_left( X+Y right) (t)=varphi_X(t).varphi_Y(t)$, if X and Y are independent, that is:



$varphi_U(t)$=$varphi_left( X+Y right) (t)=left( 1- fracita right)^left( -2 right)$



3) I know that $varphi_left(-Y right) (t)=barvarphi_Y(t))$, where $barvarphi_Y(t))$, is the complex conjugate of $varphi_Y(t))$



4) I calculate $varphi_V(t)$=$varphi_left( X-Y right) (t)=varphi_X(t).barvarphi_Y(t)$



5) How can I proof that U and V are not independent?










share|cite|improve this question









$endgroup$




Let X and Y two independent random variables with exponential distribution of parameter a>0.
Proof using characteristic functions, that U = X+ Y and V = X- Y are not independent.



1) I calculate the characteristic function of X and Y (is the same)



$varphi_X(t)$ = $varphi_Y(t)$=$left( 1- fracita right)^left( -1 right)$



2) I know that $varphi_left( X+Y right) (t)=varphi_X(t).varphi_Y(t)$, if X and Y are independent, that is:



$varphi_U(t)$=$varphi_left( X+Y right) (t)=left( 1- fracita right)^left( -2 right)$



3) I know that $varphi_left(-Y right) (t)=barvarphi_Y(t))$, where $barvarphi_Y(t))$, is the complex conjugate of $varphi_Y(t))$



4) I calculate $varphi_V(t)$=$varphi_left( X-Y right) (t)=varphi_X(t).barvarphi_Y(t)$



5) How can I proof that U and V are not independent?







probability characteristic-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 2 at 17:59









MariaMaria

1544




1544







  • 1




    $begingroup$
    You need to work out a formula for the joint characteristic function of $(U,V)$, that is, $phi(s,t)=Eexp( sU +tV)$.
    $endgroup$
    – kimchi lover
    Apr 2 at 18:16










  • $begingroup$
    I never work with a join characteristic function. The teacher has not taught us how to do it, has not done exercises about it and it is not in the given notes. Is there another way to do it?
    $endgroup$
    – Maria
    Apr 2 at 18:35











  • $begingroup$
    I never work with a join characteristic function with characteristic functions.
    $endgroup$
    – Maria
    Apr 2 at 18:37












  • 1




    $begingroup$
    You need to work out a formula for the joint characteristic function of $(U,V)$, that is, $phi(s,t)=Eexp( sU +tV)$.
    $endgroup$
    – kimchi lover
    Apr 2 at 18:16










  • $begingroup$
    I never work with a join characteristic function. The teacher has not taught us how to do it, has not done exercises about it and it is not in the given notes. Is there another way to do it?
    $endgroup$
    – Maria
    Apr 2 at 18:35











  • $begingroup$
    I never work with a join characteristic function with characteristic functions.
    $endgroup$
    – Maria
    Apr 2 at 18:37







1




1




$begingroup$
You need to work out a formula for the joint characteristic function of $(U,V)$, that is, $phi(s,t)=Eexp( sU +tV)$.
$endgroup$
– kimchi lover
Apr 2 at 18:16




$begingroup$
You need to work out a formula for the joint characteristic function of $(U,V)$, that is, $phi(s,t)=Eexp( sU +tV)$.
$endgroup$
– kimchi lover
Apr 2 at 18:16












$begingroup$
I never work with a join characteristic function. The teacher has not taught us how to do it, has not done exercises about it and it is not in the given notes. Is there another way to do it?
$endgroup$
– Maria
Apr 2 at 18:35





$begingroup$
I never work with a join characteristic function. The teacher has not taught us how to do it, has not done exercises about it and it is not in the given notes. Is there another way to do it?
$endgroup$
– Maria
Apr 2 at 18:35













$begingroup$
I never work with a join characteristic function with characteristic functions.
$endgroup$
– Maria
Apr 2 at 18:37




$begingroup$
I never work with a join characteristic function with characteristic functions.
$endgroup$
– Maria
Apr 2 at 18:37










1 Answer
1






active

oldest

votes


















1












$begingroup$

You show that they are not independent by showing that
$$
varphi_(X+Y) + (X-Y)(t) neq varphi_(X+Y)(t) varphi_(X-Y)(t)
$$

To see this, assume $a>0$ and note that
$$
varphi_(X+Y) + (X-Y)(t) = varphi_2X(t) = int_0^infty e^itx f_2a(x),dx = frac2a2a-it
$$

and the characteristic functions of $Xpm Y$ are
$$varphi_(X+Y)(t) = int_x=0^infty int_y=0^infty e^it(x+y)
f_a(y) f_a(x),dy,dx = fraca^2(a-it)^2 \
varphi_(X-Y)(t) = int_x=0^infty int_y=0^infty e^it(x-y)
f_a(y) f_a(x),dy,dx = fraca^2a^2+t^2
$$

whence
$$
varphi_(X+Y)(t) varphi_(X-Y)(t) = fraca^4(a-it)^3(a+it) neq frac2a2a-it = varphi_(X+Y) + (X-Y)(t)
$$

Contrast this with what you get doing the same steps for Gaussian-distributed variables sharing the same mean and $sigma$, where that last equality does turn out to be true.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
    $endgroup$
    – Maria
    Apr 2 at 20:23










  • $begingroup$
    It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
    $endgroup$
    – Mark Fischler
    Apr 4 at 6:48







  • 1




    $begingroup$
    I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
    $endgroup$
    – LoveTooNap29
    Apr 7 at 18:04












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172186%2flet-x-and-y-two-independent-random-variables-with-exponential-distribution-of-pa%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You show that they are not independent by showing that
$$
varphi_(X+Y) + (X-Y)(t) neq varphi_(X+Y)(t) varphi_(X-Y)(t)
$$

To see this, assume $a>0$ and note that
$$
varphi_(X+Y) + (X-Y)(t) = varphi_2X(t) = int_0^infty e^itx f_2a(x),dx = frac2a2a-it
$$

and the characteristic functions of $Xpm Y$ are
$$varphi_(X+Y)(t) = int_x=0^infty int_y=0^infty e^it(x+y)
f_a(y) f_a(x),dy,dx = fraca^2(a-it)^2 \
varphi_(X-Y)(t) = int_x=0^infty int_y=0^infty e^it(x-y)
f_a(y) f_a(x),dy,dx = fraca^2a^2+t^2
$$

whence
$$
varphi_(X+Y)(t) varphi_(X-Y)(t) = fraca^4(a-it)^3(a+it) neq frac2a2a-it = varphi_(X+Y) + (X-Y)(t)
$$

Contrast this with what you get doing the same steps for Gaussian-distributed variables sharing the same mean and $sigma$, where that last equality does turn out to be true.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
    $endgroup$
    – Maria
    Apr 2 at 20:23










  • $begingroup$
    It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
    $endgroup$
    – Mark Fischler
    Apr 4 at 6:48







  • 1




    $begingroup$
    I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
    $endgroup$
    – LoveTooNap29
    Apr 7 at 18:04
















1












$begingroup$

You show that they are not independent by showing that
$$
varphi_(X+Y) + (X-Y)(t) neq varphi_(X+Y)(t) varphi_(X-Y)(t)
$$

To see this, assume $a>0$ and note that
$$
varphi_(X+Y) + (X-Y)(t) = varphi_2X(t) = int_0^infty e^itx f_2a(x),dx = frac2a2a-it
$$

and the characteristic functions of $Xpm Y$ are
$$varphi_(X+Y)(t) = int_x=0^infty int_y=0^infty e^it(x+y)
f_a(y) f_a(x),dy,dx = fraca^2(a-it)^2 \
varphi_(X-Y)(t) = int_x=0^infty int_y=0^infty e^it(x-y)
f_a(y) f_a(x),dy,dx = fraca^2a^2+t^2
$$

whence
$$
varphi_(X+Y)(t) varphi_(X-Y)(t) = fraca^4(a-it)^3(a+it) neq frac2a2a-it = varphi_(X+Y) + (X-Y)(t)
$$

Contrast this with what you get doing the same steps for Gaussian-distributed variables sharing the same mean and $sigma$, where that last equality does turn out to be true.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
    $endgroup$
    – Maria
    Apr 2 at 20:23










  • $begingroup$
    It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
    $endgroup$
    – Mark Fischler
    Apr 4 at 6:48







  • 1




    $begingroup$
    I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
    $endgroup$
    – LoveTooNap29
    Apr 7 at 18:04














1












1








1





$begingroup$

You show that they are not independent by showing that
$$
varphi_(X+Y) + (X-Y)(t) neq varphi_(X+Y)(t) varphi_(X-Y)(t)
$$

To see this, assume $a>0$ and note that
$$
varphi_(X+Y) + (X-Y)(t) = varphi_2X(t) = int_0^infty e^itx f_2a(x),dx = frac2a2a-it
$$

and the characteristic functions of $Xpm Y$ are
$$varphi_(X+Y)(t) = int_x=0^infty int_y=0^infty e^it(x+y)
f_a(y) f_a(x),dy,dx = fraca^2(a-it)^2 \
varphi_(X-Y)(t) = int_x=0^infty int_y=0^infty e^it(x-y)
f_a(y) f_a(x),dy,dx = fraca^2a^2+t^2
$$

whence
$$
varphi_(X+Y)(t) varphi_(X-Y)(t) = fraca^4(a-it)^3(a+it) neq frac2a2a-it = varphi_(X+Y) + (X-Y)(t)
$$

Contrast this with what you get doing the same steps for Gaussian-distributed variables sharing the same mean and $sigma$, where that last equality does turn out to be true.






share|cite|improve this answer









$endgroup$



You show that they are not independent by showing that
$$
varphi_(X+Y) + (X-Y)(t) neq varphi_(X+Y)(t) varphi_(X-Y)(t)
$$

To see this, assume $a>0$ and note that
$$
varphi_(X+Y) + (X-Y)(t) = varphi_2X(t) = int_0^infty e^itx f_2a(x),dx = frac2a2a-it
$$

and the characteristic functions of $Xpm Y$ are
$$varphi_(X+Y)(t) = int_x=0^infty int_y=0^infty e^it(x+y)
f_a(y) f_a(x),dy,dx = fraca^2(a-it)^2 \
varphi_(X-Y)(t) = int_x=0^infty int_y=0^infty e^it(x-y)
f_a(y) f_a(x),dy,dx = fraca^2a^2+t^2
$$

whence
$$
varphi_(X+Y)(t) varphi_(X-Y)(t) = fraca^4(a-it)^3(a+it) neq frac2a2a-it = varphi_(X+Y) + (X-Y)(t)
$$

Contrast this with what you get doing the same steps for Gaussian-distributed variables sharing the same mean and $sigma$, where that last equality does turn out to be true.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 2 at 19:01









Mark FischlerMark Fischler

34.5k12552




34.5k12552











  • $begingroup$
    Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
    $endgroup$
    – Maria
    Apr 2 at 20:23










  • $begingroup$
    It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
    $endgroup$
    – Mark Fischler
    Apr 4 at 6:48







  • 1




    $begingroup$
    I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
    $endgroup$
    – LoveTooNap29
    Apr 7 at 18:04

















  • $begingroup$
    Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
    $endgroup$
    – Maria
    Apr 2 at 20:23










  • $begingroup$
    It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
    $endgroup$
    – Mark Fischler
    Apr 4 at 6:48







  • 1




    $begingroup$
    I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
    $endgroup$
    – LoveTooNap29
    Apr 7 at 18:04
















$begingroup$
Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
$endgroup$
– Maria
Apr 2 at 20:23




$begingroup$
Thanks. One question. phi(2X) is a/(a-i2t) or 2a/ (2a + it)??
$endgroup$
– Maria
Apr 2 at 20:23












$begingroup$
It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
$endgroup$
– Mark Fischler
Apr 4 at 6:48





$begingroup$
It's $2a/(2a-it)$. Note that $$left( 1-fracita right)^-1 = left(fraca-itaright)^-1 = fracaa-it$$ and the $-it$ in the denominator of $varphi_2X$ comes about in the same way, replacing $a$ by $2X$.
$endgroup$
– Mark Fischler
Apr 4 at 6:48





1




1




$begingroup$
I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
$endgroup$
– LoveTooNap29
Apr 7 at 18:04





$begingroup$
I do not think that $phi_2X(t)=frac2a2a-it$. If $X$ is exponential with parameter $a$ and mean $1/a$, then $cX$ is exponential with parameter $a/c$ and mean $c/a$, provided $c>0$. The CF of $X$ is $fracaa-it$ and the CF of $cX$ is $fraca/ca/c-it=fracaa-ict$. This is also seen by $phi_cX(t)=phi_X(ct)$. Can you correct me or verify this?
$endgroup$
– LoveTooNap29
Apr 7 at 18:04


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172186%2flet-x-and-y-two-independent-random-variables-with-exponential-distribution-of-pa%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu