How to deal with poles at the boundaries of integration Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Poles with complex multiplicityIntegration with functions as boundariesHow to deal with poles along contour of integrationHow to deal with this singularity in numerical integration?Partial integration and then substitution (How do boundaries change)?how to deal with principal value integral qns that have three poles?How to determine the integration boundaries of the following double integral?Evaluating improper integral using contours?How to deal with contour integral with sine?How does complex analysis deal with ‘pole cluster’?

Hide attachment record without code

One-one communication

Random body shuffle every night—can we still function?

Maximum rotation made by a symmetric positive definite matrix?

The Nth Gryphon Number

Why is there so little support for joining EFTA in the British parliament?

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

Was the pager message from Nick Fury to Captain Marvel unnecessary?

Marquee sign letters

Which types of prepositional phrase is "toward its employees" in Philosophy guiding the organization's policies towards its employees is not bad?

Why do C and C++ allow the expression (int) + 4*5?

Improvising over quartal voicings

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

Can gravitational waves pass through a black hole?

"Destructive power" carried by a B-52?

How can I introduce the names of fantasy creatures to the reader?

Where did Ptolemy compare the Earth to the distance of fixed stars?

How to ask rejected full-time candidates to apply to teach individual courses?

Understanding piped commands in GNU/Linux

Getting representations of the Lie group out of representations of its Lie algebra

Did pre-Columbian Americans know the spherical shape of the Earth?

Keep at all times, the minus sign above aligned with minus sign below

Noise in Eigenvalues plot

How to show a density matrix is in a pure/mixed state?



How to deal with poles at the boundaries of integration



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Poles with complex multiplicityIntegration with functions as boundariesHow to deal with poles along contour of integrationHow to deal with this singularity in numerical integration?Partial integration and then substitution (How do boundaries change)?how to deal with principal value integral qns that have three poles?How to determine the integration boundaries of the following double integral?Evaluating improper integral using contours?How to deal with contour integral with sine?How does complex analysis deal with ‘pole cluster’?










0












$begingroup$


How can one evaluate this integral with poles at boundaries?



$$I = int_0^a fracr^nr^1/2(a-r)^1/2dr$$, $$n=0,1,2,ldots$$










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    How can one evaluate this integral with poles at boundaries?



    $$I = int_0^a fracr^nr^1/2(a-r)^1/2dr$$, $$n=0,1,2,ldots$$










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      How can one evaluate this integral with poles at boundaries?



      $$I = int_0^a fracr^nr^1/2(a-r)^1/2dr$$, $$n=0,1,2,ldots$$










      share|cite|improve this question











      $endgroup$




      How can one evaluate this integral with poles at boundaries?



      $$I = int_0^a fracr^nr^1/2(a-r)^1/2dr$$, $$n=0,1,2,ldots$$







      complex-analysis definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 2 at 17:17







      Zaxos

















      asked Apr 2 at 17:06









      ZaxosZaxos

      61




      61




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          So generalising the integral we have
          $$I_n = int_0^a fracr^nr^1/2(a-r)^1/2dr=int_0^a r^n-frac12(a-r)^-frac12dr$$
          Then by using integration by parts we get
          $$I_n=2(n-frac12)int_0^ar^n-frac32(a-r)^frac12dr$$
          $$=(2n-1)int_0^ar^n-frac32(a-r)(a-r)^-frac12dr$$
          $$=a(2n-1)int_0^ar^n-frac32(a-r)^-frac12dr-(2n-1)int_0^ar^n-frac12(a-r)^-frac12dr$$
          $$=a(2n-1)I_n-1-(2n-1)I_n$$
          $$therefore I_n=abigg(frac2n-12nbigg)I_n-1$$
          To solve for a base case we can find $I_0$ by using the substitution $r=asin^2(theta)to dr=2asin(theta)cos(theta)dtheta$
          $$I_0=int_0^ar^-frac12(a-r)^-frac12dr=int_0^fracpi2 frac2asin(theta)cos(theta)sqrtasin^2(theta)sqrta-asin^2(theta)dtheta=pi$$
          for all $ainmathbbC$. Hence we can solve the recurrence relation to get
          $$I_n=abigg(frac2n-12nbigg)I_n-1$$
          $$=a^2bigg(frac2n-12nbigg)bigg(frac2n-32n-2bigg)I_n-2$$
          By continuing this pattern we eventually reach $I_0$ such that
          $$I_n=a^nfrac(2n-1)(2n-3)(2n-5)...(1)(2n)(2n-2)(2n-4)...(2)I_0$$
          But $I_0=pi$ hence
          $$boxedI_n=a^nfrac(2n-1)!!(2n)!!pi=Big(fraca4Big)^nfrac(2n)!(n!)^2pi$$
          where $n!!$ is the double factorial.






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172121%2fhow-to-deal-with-poles-at-the-boundaries-of-integration%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            So generalising the integral we have
            $$I_n = int_0^a fracr^nr^1/2(a-r)^1/2dr=int_0^a r^n-frac12(a-r)^-frac12dr$$
            Then by using integration by parts we get
            $$I_n=2(n-frac12)int_0^ar^n-frac32(a-r)^frac12dr$$
            $$=(2n-1)int_0^ar^n-frac32(a-r)(a-r)^-frac12dr$$
            $$=a(2n-1)int_0^ar^n-frac32(a-r)^-frac12dr-(2n-1)int_0^ar^n-frac12(a-r)^-frac12dr$$
            $$=a(2n-1)I_n-1-(2n-1)I_n$$
            $$therefore I_n=abigg(frac2n-12nbigg)I_n-1$$
            To solve for a base case we can find $I_0$ by using the substitution $r=asin^2(theta)to dr=2asin(theta)cos(theta)dtheta$
            $$I_0=int_0^ar^-frac12(a-r)^-frac12dr=int_0^fracpi2 frac2asin(theta)cos(theta)sqrtasin^2(theta)sqrta-asin^2(theta)dtheta=pi$$
            for all $ainmathbbC$. Hence we can solve the recurrence relation to get
            $$I_n=abigg(frac2n-12nbigg)I_n-1$$
            $$=a^2bigg(frac2n-12nbigg)bigg(frac2n-32n-2bigg)I_n-2$$
            By continuing this pattern we eventually reach $I_0$ such that
            $$I_n=a^nfrac(2n-1)(2n-3)(2n-5)...(1)(2n)(2n-2)(2n-4)...(2)I_0$$
            But $I_0=pi$ hence
            $$boxedI_n=a^nfrac(2n-1)!!(2n)!!pi=Big(fraca4Big)^nfrac(2n)!(n!)^2pi$$
            where $n!!$ is the double factorial.






            share|cite|improve this answer











            $endgroup$

















              0












              $begingroup$

              So generalising the integral we have
              $$I_n = int_0^a fracr^nr^1/2(a-r)^1/2dr=int_0^a r^n-frac12(a-r)^-frac12dr$$
              Then by using integration by parts we get
              $$I_n=2(n-frac12)int_0^ar^n-frac32(a-r)^frac12dr$$
              $$=(2n-1)int_0^ar^n-frac32(a-r)(a-r)^-frac12dr$$
              $$=a(2n-1)int_0^ar^n-frac32(a-r)^-frac12dr-(2n-1)int_0^ar^n-frac12(a-r)^-frac12dr$$
              $$=a(2n-1)I_n-1-(2n-1)I_n$$
              $$therefore I_n=abigg(frac2n-12nbigg)I_n-1$$
              To solve for a base case we can find $I_0$ by using the substitution $r=asin^2(theta)to dr=2asin(theta)cos(theta)dtheta$
              $$I_0=int_0^ar^-frac12(a-r)^-frac12dr=int_0^fracpi2 frac2asin(theta)cos(theta)sqrtasin^2(theta)sqrta-asin^2(theta)dtheta=pi$$
              for all $ainmathbbC$. Hence we can solve the recurrence relation to get
              $$I_n=abigg(frac2n-12nbigg)I_n-1$$
              $$=a^2bigg(frac2n-12nbigg)bigg(frac2n-32n-2bigg)I_n-2$$
              By continuing this pattern we eventually reach $I_0$ such that
              $$I_n=a^nfrac(2n-1)(2n-3)(2n-5)...(1)(2n)(2n-2)(2n-4)...(2)I_0$$
              But $I_0=pi$ hence
              $$boxedI_n=a^nfrac(2n-1)!!(2n)!!pi=Big(fraca4Big)^nfrac(2n)!(n!)^2pi$$
              where $n!!$ is the double factorial.






              share|cite|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                So generalising the integral we have
                $$I_n = int_0^a fracr^nr^1/2(a-r)^1/2dr=int_0^a r^n-frac12(a-r)^-frac12dr$$
                Then by using integration by parts we get
                $$I_n=2(n-frac12)int_0^ar^n-frac32(a-r)^frac12dr$$
                $$=(2n-1)int_0^ar^n-frac32(a-r)(a-r)^-frac12dr$$
                $$=a(2n-1)int_0^ar^n-frac32(a-r)^-frac12dr-(2n-1)int_0^ar^n-frac12(a-r)^-frac12dr$$
                $$=a(2n-1)I_n-1-(2n-1)I_n$$
                $$therefore I_n=abigg(frac2n-12nbigg)I_n-1$$
                To solve for a base case we can find $I_0$ by using the substitution $r=asin^2(theta)to dr=2asin(theta)cos(theta)dtheta$
                $$I_0=int_0^ar^-frac12(a-r)^-frac12dr=int_0^fracpi2 frac2asin(theta)cos(theta)sqrtasin^2(theta)sqrta-asin^2(theta)dtheta=pi$$
                for all $ainmathbbC$. Hence we can solve the recurrence relation to get
                $$I_n=abigg(frac2n-12nbigg)I_n-1$$
                $$=a^2bigg(frac2n-12nbigg)bigg(frac2n-32n-2bigg)I_n-2$$
                By continuing this pattern we eventually reach $I_0$ such that
                $$I_n=a^nfrac(2n-1)(2n-3)(2n-5)...(1)(2n)(2n-2)(2n-4)...(2)I_0$$
                But $I_0=pi$ hence
                $$boxedI_n=a^nfrac(2n-1)!!(2n)!!pi=Big(fraca4Big)^nfrac(2n)!(n!)^2pi$$
                where $n!!$ is the double factorial.






                share|cite|improve this answer











                $endgroup$



                So generalising the integral we have
                $$I_n = int_0^a fracr^nr^1/2(a-r)^1/2dr=int_0^a r^n-frac12(a-r)^-frac12dr$$
                Then by using integration by parts we get
                $$I_n=2(n-frac12)int_0^ar^n-frac32(a-r)^frac12dr$$
                $$=(2n-1)int_0^ar^n-frac32(a-r)(a-r)^-frac12dr$$
                $$=a(2n-1)int_0^ar^n-frac32(a-r)^-frac12dr-(2n-1)int_0^ar^n-frac12(a-r)^-frac12dr$$
                $$=a(2n-1)I_n-1-(2n-1)I_n$$
                $$therefore I_n=abigg(frac2n-12nbigg)I_n-1$$
                To solve for a base case we can find $I_0$ by using the substitution $r=asin^2(theta)to dr=2asin(theta)cos(theta)dtheta$
                $$I_0=int_0^ar^-frac12(a-r)^-frac12dr=int_0^fracpi2 frac2asin(theta)cos(theta)sqrtasin^2(theta)sqrta-asin^2(theta)dtheta=pi$$
                for all $ainmathbbC$. Hence we can solve the recurrence relation to get
                $$I_n=abigg(frac2n-12nbigg)I_n-1$$
                $$=a^2bigg(frac2n-12nbigg)bigg(frac2n-32n-2bigg)I_n-2$$
                By continuing this pattern we eventually reach $I_0$ such that
                $$I_n=a^nfrac(2n-1)(2n-3)(2n-5)...(1)(2n)(2n-2)(2n-4)...(2)I_0$$
                But $I_0=pi$ hence
                $$boxedI_n=a^nfrac(2n-1)!!(2n)!!pi=Big(fraca4Big)^nfrac(2n)!(n!)^2pi$$
                where $n!!$ is the double factorial.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Apr 2 at 17:44

























                answered Apr 2 at 17:27









                Peter ForemanPeter Foreman

                8,5171321




                8,5171321



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172121%2fhow-to-deal-with-poles-at-the-boundaries-of-integration%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu