Determining uniqueness of solution of ODE Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Uniqueness of ODE solutionFundamental Existence and Uniqueness TheoremODE in which non-continuous function yields uniqueness of solutionA problem in first order ODE?ODE) Uniqueness-Existence ProblemConstant solutions and uniquenss of solutions theorem for IVPsDoes this fact contradict the Picard-Lindelof uniqueness theorem?A question regarding existence and uniqueness in IVPUniqueness of solution of an ODE in an interval implies uniqueness of solution in a subintervalGiven a unique local solution of ode, how do I prove a unique global solution?

How to remove this numerical artifact?

Why does BitLocker not use RSA?

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

Why did Israel vote against lifting the American embargo on Cuba?

Marquee sign letters

No Invitation for Tourist Visa, But i want to visit

Where did Ptolemy compare the Earth to the distance of fixed stars?

Searching extreme points of polyhedron

Who's the Giant Batman in the back of this dark knights metal Batman picture?

Is the Mordenkainen's Sword spell underpowered?

How to achieve cat-like agility?

Short story about astronauts fertilizing soil with their own bodies

How to resize main filesystem

Is there a canonical “inverse” of Abelianization?

The test team as an enemy of development? And how can this be avoided?

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?

Does the universe have a fixed centre of mass?

Why not use the yoke to control yaw, as well as pitch and roll?

Hide attachment record without code

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Random body shuffle every night—can we still function?

Inverse square law not accurate for non-point masses?

IC on Digikey is 5x more expensive than board containing same IC on Alibaba: How?

How do I find my Spellcasting Ability for my D&D character?



Determining uniqueness of solution of ODE



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Uniqueness of ODE solutionFundamental Existence and Uniqueness TheoremODE in which non-continuous function yields uniqueness of solutionA problem in first order ODE?ODE) Uniqueness-Existence ProblemConstant solutions and uniquenss of solutions theorem for IVPsDoes this fact contradict the Picard-Lindelof uniqueness theorem?A question regarding existence and uniqueness in IVPUniqueness of solution of an ODE in an interval implies uniqueness of solution in a subintervalGiven a unique local solution of ode, how do I prove a unique global solution?










0












$begingroup$


We have an IVP:



$$x'=frac2xsqrtln(x)t$$
$$x(t_0)=1$$
and $t_0 >0$ , $x>1$



The question is:



Does this IVP have a unique solution for any value of $t_0$ ?




I found the general solution which is $x(t)=e^(ln(t) +C)^2$ but ODEs are quite a new thing to me and the existance and uniqueness issues are still a bit unclear for me, so I would appreciate any explanation.










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    We have an IVP:



    $$x'=frac2xsqrtln(x)t$$
    $$x(t_0)=1$$
    and $t_0 >0$ , $x>1$



    The question is:



    Does this IVP have a unique solution for any value of $t_0$ ?




    I found the general solution which is $x(t)=e^(ln(t) +C)^2$ but ODEs are quite a new thing to me and the existance and uniqueness issues are still a bit unclear for me, so I would appreciate any explanation.










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      We have an IVP:



      $$x'=frac2xsqrtln(x)t$$
      $$x(t_0)=1$$
      and $t_0 >0$ , $x>1$



      The question is:



      Does this IVP have a unique solution for any value of $t_0$ ?




      I found the general solution which is $x(t)=e^(ln(t) +C)^2$ but ODEs are quite a new thing to me and the existance and uniqueness issues are still a bit unclear for me, so I would appreciate any explanation.










      share|cite|improve this question









      $endgroup$




      We have an IVP:



      $$x'=frac2xsqrtln(x)t$$
      $$x(t_0)=1$$
      and $t_0 >0$ , $x>1$



      The question is:



      Does this IVP have a unique solution for any value of $t_0$ ?




      I found the general solution which is $x(t)=e^(ln(t) +C)^2$ but ODEs are quite a new thing to me and the existance and uniqueness issues are still a bit unclear for me, so I would appreciate any explanation.







      ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 2 at 17:03









      Wojtek MaślakiewiczWojtek Maślakiewicz

      585




      585




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The usual Picard–Lindelöf Existence and Uniqueness Theorem applies when the right side of your equation and its partial derivative with respect to $x$ are continuous in a neighbourhood of the initial condition $(x_0, t_0)$. This is the case for your initial condition
          since $x_0 > 1$ (so there is no problem with the square root of the logarithm) and $t_0 > 0$ (so there is no problem with division by $t$). So yes, there is a unique solution satisfying the initial condition defined in some neighbourhood of $t_0$. It may stop existing or stop being unique if it runs off to $pm infty$ or leaves the region $(x > 1, t>0$).



          EDITED AGAIN: For example, consider the case $t_0 = 1$, $x_0 = e$. The solution you found is $x = e^(1 + ln t)^2$. However, (assuming as usual we take the positive square root) that is only a solution when $1 + ln t ge 0$, i.e. $t ge 1/e$. On the other hand the constant $x=1$ is a solution. Thus the actual (unique) solution with this initial point is
          $$ x(t) = cases1 & if $0 < t le 1/e$cr
          e^(1+ln t)^2 & if $t ge 1/e$cr$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
            $endgroup$
            – Wojtek Maślakiewicz
            Apr 2 at 17:53










          • $begingroup$
            Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
            $endgroup$
            – Robert Israel
            Apr 2 at 20:18












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172117%2fdetermining-uniqueness-of-solution-of-ode%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          The usual Picard–Lindelöf Existence and Uniqueness Theorem applies when the right side of your equation and its partial derivative with respect to $x$ are continuous in a neighbourhood of the initial condition $(x_0, t_0)$. This is the case for your initial condition
          since $x_0 > 1$ (so there is no problem with the square root of the logarithm) and $t_0 > 0$ (so there is no problem with division by $t$). So yes, there is a unique solution satisfying the initial condition defined in some neighbourhood of $t_0$. It may stop existing or stop being unique if it runs off to $pm infty$ or leaves the region $(x > 1, t>0$).



          EDITED AGAIN: For example, consider the case $t_0 = 1$, $x_0 = e$. The solution you found is $x = e^(1 + ln t)^2$. However, (assuming as usual we take the positive square root) that is only a solution when $1 + ln t ge 0$, i.e. $t ge 1/e$. On the other hand the constant $x=1$ is a solution. Thus the actual (unique) solution with this initial point is
          $$ x(t) = cases1 & if $0 < t le 1/e$cr
          e^(1+ln t)^2 & if $t ge 1/e$cr$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
            $endgroup$
            – Wojtek Maślakiewicz
            Apr 2 at 17:53










          • $begingroup$
            Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
            $endgroup$
            – Robert Israel
            Apr 2 at 20:18
















          1












          $begingroup$

          The usual Picard–Lindelöf Existence and Uniqueness Theorem applies when the right side of your equation and its partial derivative with respect to $x$ are continuous in a neighbourhood of the initial condition $(x_0, t_0)$. This is the case for your initial condition
          since $x_0 > 1$ (so there is no problem with the square root of the logarithm) and $t_0 > 0$ (so there is no problem with division by $t$). So yes, there is a unique solution satisfying the initial condition defined in some neighbourhood of $t_0$. It may stop existing or stop being unique if it runs off to $pm infty$ or leaves the region $(x > 1, t>0$).



          EDITED AGAIN: For example, consider the case $t_0 = 1$, $x_0 = e$. The solution you found is $x = e^(1 + ln t)^2$. However, (assuming as usual we take the positive square root) that is only a solution when $1 + ln t ge 0$, i.e. $t ge 1/e$. On the other hand the constant $x=1$ is a solution. Thus the actual (unique) solution with this initial point is
          $$ x(t) = cases1 & if $0 < t le 1/e$cr
          e^(1+ln t)^2 & if $t ge 1/e$cr$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
            $endgroup$
            – Wojtek Maślakiewicz
            Apr 2 at 17:53










          • $begingroup$
            Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
            $endgroup$
            – Robert Israel
            Apr 2 at 20:18














          1












          1








          1





          $begingroup$

          The usual Picard–Lindelöf Existence and Uniqueness Theorem applies when the right side of your equation and its partial derivative with respect to $x$ are continuous in a neighbourhood of the initial condition $(x_0, t_0)$. This is the case for your initial condition
          since $x_0 > 1$ (so there is no problem with the square root of the logarithm) and $t_0 > 0$ (so there is no problem with division by $t$). So yes, there is a unique solution satisfying the initial condition defined in some neighbourhood of $t_0$. It may stop existing or stop being unique if it runs off to $pm infty$ or leaves the region $(x > 1, t>0$).



          EDITED AGAIN: For example, consider the case $t_0 = 1$, $x_0 = e$. The solution you found is $x = e^(1 + ln t)^2$. However, (assuming as usual we take the positive square root) that is only a solution when $1 + ln t ge 0$, i.e. $t ge 1/e$. On the other hand the constant $x=1$ is a solution. Thus the actual (unique) solution with this initial point is
          $$ x(t) = cases1 & if $0 < t le 1/e$cr
          e^(1+ln t)^2 & if $t ge 1/e$cr$$






          share|cite|improve this answer











          $endgroup$



          The usual Picard–Lindelöf Existence and Uniqueness Theorem applies when the right side of your equation and its partial derivative with respect to $x$ are continuous in a neighbourhood of the initial condition $(x_0, t_0)$. This is the case for your initial condition
          since $x_0 > 1$ (so there is no problem with the square root of the logarithm) and $t_0 > 0$ (so there is no problem with division by $t$). So yes, there is a unique solution satisfying the initial condition defined in some neighbourhood of $t_0$. It may stop existing or stop being unique if it runs off to $pm infty$ or leaves the region $(x > 1, t>0$).



          EDITED AGAIN: For example, consider the case $t_0 = 1$, $x_0 = e$. The solution you found is $x = e^(1 + ln t)^2$. However, (assuming as usual we take the positive square root) that is only a solution when $1 + ln t ge 0$, i.e. $t ge 1/e$. On the other hand the constant $x=1$ is a solution. Thus the actual (unique) solution with this initial point is
          $$ x(t) = cases1 & if $0 < t le 1/e$cr
          e^(1+ln t)^2 & if $t ge 1/e$cr$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 2 at 20:15

























          answered Apr 2 at 17:17









          Robert IsraelRobert Israel

          332k23222482




          332k23222482











          • $begingroup$
            So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
            $endgroup$
            – Wojtek Maślakiewicz
            Apr 2 at 17:53










          • $begingroup$
            Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
            $endgroup$
            – Robert Israel
            Apr 2 at 20:18

















          • $begingroup$
            So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
            $endgroup$
            – Wojtek Maślakiewicz
            Apr 2 at 17:53










          • $begingroup$
            Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
            $endgroup$
            – Robert Israel
            Apr 2 at 20:18
















          $begingroup$
          So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
          $endgroup$
          – Wojtek Maślakiewicz
          Apr 2 at 17:53




          $begingroup$
          So am I correct that if we leave the assumption $x_0>1$ and set the initial value to $x(t_0)=1$ than we can have a constant solution $x=1$ and therefore there would be no uniqueness, right?
          $endgroup$
          – Wojtek Maślakiewicz
          Apr 2 at 17:53












          $begingroup$
          Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
          $endgroup$
          – Robert Israel
          Apr 2 at 20:18





          $begingroup$
          Yes, with initial condition $x(t_0) = 1$ we don't have uniqueness because we have $x=1$ and also solutions of the form $$x(t) = cases1 & if $0 < t le t_1$cr e^(ln(t) - ln(t_1))^2 & if $t ge t_1$$$ for any $t_1 > t_0$.
          $endgroup$
          – Robert Israel
          Apr 2 at 20:18


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172117%2fdetermining-uniqueness-of-solution-of-ode%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu