Why can I not use leibniz integral rule in this case? The 2019 Stack Overflow Developer Survey Results Are InLeibniz rule for an improper integralIntegrate $ sin x /(1 + A sin x)$ over the range $0$,$2 pi$ for $A=0.2$What is wrong with this integration of $ int_0^2pisin x /(1 + A sin x)$Let the function satisfy $f(x)f'(-x)=f(-x)f'(x)$ and $f(0)=3$ for all $x$Leibniz rule or not? improper integral?Is this transformation for the integral $int_0^infty frac1te^-a^2/t^2-b t textdt$ correct?Analytic solution to definite integral problemWhen deriving Leibniz Integral rule, why not take $f$ as another variable?Applying Leibniz rule to multiple integralLeibniz integral rule for higher order derivatives

Write faster on AT24C32

Where to refill my bottle in India?

What do hard-Brexiteers want with respect to the Irish border?

What is the accessibility of a package's `Private` context variables?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Identify boardgame from Big movie

Is flight data recorder erased after every flight?

Geography at the pixel level

How technical should a Scrum Master be to effectively remove impediments?

Multiply Two Integer Polynomials

Why is the maximum length of OpenWrt’s root password 8 characters?

Can you compress metal and what would be the consequences?

Apparent duplicates between Haynes service instructions and MOT

Does the shape of a die affect the probability of a number being rolled?

Button changing it's text & action. Good or terrible?

Origin of "cooter" meaning "vagina"

Is three citations per paragraph excessive for undergraduate research paper?

How can I autofill dates in Excel excluding Sunday?

Am I thawing this London Broil safely?

What did it mean to "align" a radio?

How to support a colleague who finds meetings extremely tiring?

Who coined the term "madman theory"?

Can a flute soloist sit?

FPGA - DIY Programming



Why can I not use leibniz integral rule in this case?



The 2019 Stack Overflow Developer Survey Results Are InLeibniz rule for an improper integralIntegrate $ sin x /(1 + A sin x)$ over the range $0$,$2 pi$ for $A=0.2$What is wrong with this integration of $ int_0^2pisin x /(1 + A sin x)$Let the function satisfy $f(x)f'(-x)=f(-x)f'(x)$ and $f(0)=3$ for all $x$Leibniz rule or not? improper integral?Is this transformation for the integral $int_0^infty frac1te^-a^2/t^2-b t textdt$ correct?Analytic solution to definite integral problemWhen deriving Leibniz Integral rule, why not take $f$ as another variable?Applying Leibniz rule to multiple integralLeibniz integral rule for higher order derivatives










0












$begingroup$



$int_0^x f(t)dt to 5 ~textas~ |x|to 1 $find number of integers in range of $p $ so that the equation $2x + int_0^x f(t)dt=p$ has two roots opposite signs in $(-1,1)$




Using leibniz rule on the given equation differentiating gives $$f(x)=-2$$ Therefore $$int_0^x f(t)dt to 5$$



becomes
$$-2x + c to 5$$



Which can not satisfy the condition uniquely for $|x|to 1$ gives two values of c for $^+ _- 1$










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    It’s ‘int_0^x’
    $endgroup$
    – Randall
    Mar 30 at 16:46















0












$begingroup$



$int_0^x f(t)dt to 5 ~textas~ |x|to 1 $find number of integers in range of $p $ so that the equation $2x + int_0^x f(t)dt=p$ has two roots opposite signs in $(-1,1)$




Using leibniz rule on the given equation differentiating gives $$f(x)=-2$$ Therefore $$int_0^x f(t)dt to 5$$



becomes
$$-2x + c to 5$$



Which can not satisfy the condition uniquely for $|x|to 1$ gives two values of c for $^+ _- 1$










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    It’s ‘int_0^x’
    $endgroup$
    – Randall
    Mar 30 at 16:46













0












0








0





$begingroup$



$int_0^x f(t)dt to 5 ~textas~ |x|to 1 $find number of integers in range of $p $ so that the equation $2x + int_0^x f(t)dt=p$ has two roots opposite signs in $(-1,1)$




Using leibniz rule on the given equation differentiating gives $$f(x)=-2$$ Therefore $$int_0^x f(t)dt to 5$$



becomes
$$-2x + c to 5$$



Which can not satisfy the condition uniquely for $|x|to 1$ gives two values of c for $^+ _- 1$










share|cite|improve this question











$endgroup$





$int_0^x f(t)dt to 5 ~textas~ |x|to 1 $find number of integers in range of $p $ so that the equation $2x + int_0^x f(t)dt=p$ has two roots opposite signs in $(-1,1)$




Using leibniz rule on the given equation differentiating gives $$f(x)=-2$$ Therefore $$int_0^x f(t)dt to 5$$



becomes
$$-2x + c to 5$$



Which can not satisfy the condition uniquely for $|x|to 1$ gives two values of c for $^+ _- 1$







definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 30 at 23:01









Gerry Myerson

148k8152306




148k8152306










asked Mar 30 at 16:42









AvkaAvka

706




706







  • 1




    $begingroup$
    It’s ‘int_0^x’
    $endgroup$
    – Randall
    Mar 30 at 16:46












  • 1




    $begingroup$
    It’s ‘int_0^x’
    $endgroup$
    – Randall
    Mar 30 at 16:46







1




1




$begingroup$
It’s ‘int_0^x’
$endgroup$
– Randall
Mar 30 at 16:46




$begingroup$
It’s ‘int_0^x’
$endgroup$
– Randall
Mar 30 at 16:46










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168500%2fwhy-can-i-not-use-leibniz-integral-rule-in-this-case%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168500%2fwhy-can-i-not-use-leibniz-integral-rule-in-this-case%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε