$A^nneq0implies A^kneq0 ;forall;kinmathbbN$ The 2019 Stack Overflow Developer Survey Results Are InDon't understand theorem $exists zin mathbbRforall xin mathbbR^+left[exists yin mathbbR(y-x=y/x)leftrightarrow xneq zright]$.Proof verification: Determine whether $f(x)$ is one-to-one or not(Could somebody check my) Proof that a subset of a linearly independent set is also L.I.$Ain mathbbR^ntimes n$ has eigenvalues in $mathbbZ$ with at least 3 different eigenvalues. $det(A)^n = 5^4$, find $A$'s eigenvaluesShow that the determinant is $pm 1$There exists $x^*neq 0$ such that $Ax^* = 0$ $iff det A = 0$ or $det A neq 0$?$E(x) = mathbbI_n - xx^* $ is nonsingular if and only if $x^*x neq 1$Dependent Column Vectors iff Zero Determinant for any Field?Let $A,BinmathbbC^ntimes n$ be such that $A^*B=B^*A$. Show that $textrank (A,B)=n$ iff $det(B+i A)neq0$Vector space basics: scalar times a nonzero vector = zero implies scalar = zero?

Can a flute soloist sit?

Time travel alters history but people keep saying nothing's changed

What does ひと匙 mean in this manga and has it been used colloquially?

What is the meaning of Triage in Cybersec world?

Why do UK politicians seemingly ignore opinion polls on Brexit?

Protecting Dualbooting Windows from dangerous code (like rm -rf)

Can one be advised by a professor who is very far away?

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

What is the meaning of the verb "bear" in this context?

Origin of "cooter" meaning "vagina"

How to manage monthly salary

Why do we hear so much about the Trump administration deciding to impose and then remove tariffs?

Deal with toxic manager when you can't quit

What did it mean to "align" a radio?

During Temple times, who can butcher a kosher animal?

Shouldn't "much" here be used instead of "more"?

Does a dangling wire really electrocute me if I'm standing in water?

Aging parents with no investments

Are there incongruent pythagorean triangles with the same perimeter and same area?

Write faster on AT24C32

What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

How can I autofill dates in Excel excluding Sunday?



$A^nneq0implies A^kneq0 ;forall;kinmathbbN$



The 2019 Stack Overflow Developer Survey Results Are InDon't understand theorem $exists zin mathbbRforall xin mathbbR^+left[exists yin mathbbR(y-x=y/x)leftrightarrow xneq zright]$.Proof verification: Determine whether $f(x)$ is one-to-one or not(Could somebody check my) Proof that a subset of a linearly independent set is also L.I.$Ain mathbbR^ntimes n$ has eigenvalues in $mathbbZ$ with at least 3 different eigenvalues. $det(A)^n = 5^4$, find $A$'s eigenvaluesShow that the determinant is $pm 1$There exists $x^*neq 0$ such that $Ax^* = 0$ $iff det A = 0$ or $det A neq 0$?$E(x) = mathbbI_n - xx^* $ is nonsingular if and only if $x^*x neq 1$Dependent Column Vectors iff Zero Determinant for any Field?Let $A,BinmathbbC^ntimes n$ be such that $A^*B=B^*A$. Show that $textrank (A,B)=n$ iff $det(B+i A)neq0$Vector space basics: scalar times a nonzero vector = zero implies scalar = zero?










0












$begingroup$



Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.




$rule18cm1pt$



My arguments $textbf1$:



Let $O_ntimes n$ is the zero matrix.



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$



$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$

such that $k-jnleq n$.



If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$



If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.



$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$



Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$



$rule18cm1pt$



I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
    $endgroup$
    – Thorgott
    Mar 30 at 16:49






  • 1




    $begingroup$
    @Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
    $endgroup$
    – Yadati Kiran
    Mar 30 at 17:00
















0












$begingroup$



Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.




$rule18cm1pt$



My arguments $textbf1$:



Let $O_ntimes n$ is the zero matrix.



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$



$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$

such that $k-jnleq n$.



If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$



If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.



$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$



Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$



$rule18cm1pt$



I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
    $endgroup$
    – Thorgott
    Mar 30 at 16:49






  • 1




    $begingroup$
    @Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
    $endgroup$
    – Yadati Kiran
    Mar 30 at 17:00














0












0








0





$begingroup$



Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.




$rule18cm1pt$



My arguments $textbf1$:



Let $O_ntimes n$ is the zero matrix.



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$



$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$

such that $k-jnleq n$.



If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$



If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.



$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$



Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$



$rule18cm1pt$



I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?










share|cite|improve this question









$endgroup$





Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.




$rule18cm1pt$



My arguments $textbf1$:



Let $O_ntimes n$ is the zero matrix.



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$



$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$

such that $k-jnleq n$.



If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$



If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.



$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$



Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:



Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.



$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$



$rule18cm1pt$



I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?







linear-algebra proof-verification






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 30 at 16:39









Yadati KiranYadati Kiran

2,0941622




2,0941622







  • 4




    $begingroup$
    The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
    $endgroup$
    – Thorgott
    Mar 30 at 16:49






  • 1




    $begingroup$
    @Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
    $endgroup$
    – Yadati Kiran
    Mar 30 at 17:00













  • 4




    $begingroup$
    The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
    $endgroup$
    – Thorgott
    Mar 30 at 16:49






  • 1




    $begingroup$
    @Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
    $endgroup$
    – Yadati Kiran
    Mar 30 at 17:00








4




4




$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49




$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49




1




1




$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00





$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00











3 Answers
3






active

oldest

votes


















3












$begingroup$

In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.




$Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)



      The correct arguments I see all use somewhat more advanced concepts.



      Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168494%2fan-neq0-implies-ak-neq0-forall-k-in-mathbbn%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.




        $Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...






        share|cite|improve this answer









        $endgroup$

















          3












          $begingroup$

          In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.




          $Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...






          share|cite|improve this answer









          $endgroup$















            3












            3








            3





            $begingroup$

            In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.




            $Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...






            share|cite|improve this answer









            $endgroup$



            In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.




            $Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 30 at 16:47









            user657324user657324

            55310




            55310





















                1












                $begingroup$

                By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.






                    share|cite|improve this answer









                    $endgroup$



                    By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 30 at 16:51









                    user296113user296113

                    7,015928




                    7,015928





















                        1












                        $begingroup$

                        Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)



                        The correct arguments I see all use somewhat more advanced concepts.



                        Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)



                          The correct arguments I see all use somewhat more advanced concepts.



                          Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)



                            The correct arguments I see all use somewhat more advanced concepts.



                            Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.






                            share|cite|improve this answer









                            $endgroup$



                            Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)



                            The correct arguments I see all use somewhat more advanced concepts.



                            Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 30 at 16:59









                            David C. UllrichDavid C. Ullrich

                            61.7k44095




                            61.7k44095



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168494%2fan-neq0-implies-ak-neq0-forall-k-in-mathbbn%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                Ingelân Ynhâld Etymology | Geografy | Skiednis | Polityk en bestjoer | Ekonomy | Demografy | Kultuer | Klimaat | Sjoch ek | Keppelings om utens | Boarnen, noaten en referinsjes Navigaasjemenuwww.gov.ukOffisjele webside fan it regear fan it Feriene KeninkrykOffisjele webside fan it Britske FerkearsburoNederlânsktalige ynformaasje fan it Britske FerkearsburoOffisjele webside fan English Heritage, de organisaasje dy't him ynset foar it behâld fan it Ingelske kultuergoedYnwennertallen fan alle Britske stêden út 'e folkstelling fan 2011Notes en References, op dizze sideEngland

                                Boston (Lincolnshire) Stedsbyld | Berne yn Boston | NavigaasjemenuBoston Borough CouncilBoston, Lincolnshire