$A^nneq0implies A^kneq0 ;forall;kinmathbbN$ The 2019 Stack Overflow Developer Survey Results Are InDon't understand theorem $exists zin mathbbRforall xin mathbbR^+left[exists yin mathbbR(y-x=y/x)leftrightarrow xneq zright]$.Proof verification: Determine whether $f(x)$ is one-to-one or not(Could somebody check my) Proof that a subset of a linearly independent set is also L.I.$Ain mathbbR^ntimes n$ has eigenvalues in $mathbbZ$ with at least 3 different eigenvalues. $det(A)^n = 5^4$, find $A$'s eigenvaluesShow that the determinant is $pm 1$There exists $x^*neq 0$ such that $Ax^* = 0$ $iff det A = 0$ or $det A neq 0$?$E(x) = mathbbI_n - xx^* $ is nonsingular if and only if $x^*x neq 1$Dependent Column Vectors iff Zero Determinant for any Field?Let $A,BinmathbbC^ntimes n$ be such that $A^*B=B^*A$. Show that $textrank (A,B)=n$ iff $det(B+i A)neq0$Vector space basics: scalar times a nonzero vector = zero implies scalar = zero?
Can a flute soloist sit?
Time travel alters history but people keep saying nothing's changed
What does ひと匙 mean in this manga and has it been used colloquially?
What is the meaning of Triage in Cybersec world?
Why do UK politicians seemingly ignore opinion polls on Brexit?
Protecting Dualbooting Windows from dangerous code (like rm -rf)
Can one be advised by a professor who is very far away?
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
What is the meaning of the verb "bear" in this context?
Origin of "cooter" meaning "vagina"
How to manage monthly salary
Why do we hear so much about the Trump administration deciding to impose and then remove tariffs?
Deal with toxic manager when you can't quit
What did it mean to "align" a radio?
During Temple times, who can butcher a kosher animal?
Shouldn't "much" here be used instead of "more"?
Does a dangling wire really electrocute me if I'm standing in water?
Aging parents with no investments
Are there incongruent pythagorean triangles with the same perimeter and same area?
Write faster on AT24C32
What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
How can I autofill dates in Excel excluding Sunday?
$A^nneq0implies A^kneq0 ;forall;kinmathbbN$
The 2019 Stack Overflow Developer Survey Results Are InDon't understand theorem $exists zin mathbbRforall xin mathbbR^+left[exists yin mathbbR(y-x=y/x)leftrightarrow xneq zright]$.Proof verification: Determine whether $f(x)$ is one-to-one or not(Could somebody check my) Proof that a subset of a linearly independent set is also L.I.$Ain mathbbR^ntimes n$ has eigenvalues in $mathbbZ$ with at least 3 different eigenvalues. $det(A)^n = 5^4$, find $A$'s eigenvaluesShow that the determinant is $pm 1$There exists $x^*neq 0$ such that $Ax^* = 0$ $iff det A = 0$ or $det A neq 0$?$E(x) = mathbbI_n - xx^* $ is nonsingular if and only if $x^*x neq 1$Dependent Column Vectors iff Zero Determinant for any Field?Let $A,BinmathbbC^ntimes n$ be such that $A^*B=B^*A$. Show that $textrank (A,B)=n$ iff $det(B+i A)neq0$Vector space basics: scalar times a nonzero vector = zero implies scalar = zero?
$begingroup$
Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.
$rule18cm1pt$
My arguments $textbf1$:
Let $O_ntimes n$ is the zero matrix.
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$
$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$
such that $k-jnleq n$.
If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$
If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.
$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$
Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$
$rule18cm1pt$
I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?
linear-algebra proof-verification
$endgroup$
add a comment |
$begingroup$
Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.
$rule18cm1pt$
My arguments $textbf1$:
Let $O_ntimes n$ is the zero matrix.
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$
$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$
such that $k-jnleq n$.
If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$
If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.
$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$
Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$
$rule18cm1pt$
I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?
linear-algebra proof-verification
$endgroup$
4
$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49
1
$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00
add a comment |
$begingroup$
Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.
$rule18cm1pt$
My arguments $textbf1$:
Let $O_ntimes n$ is the zero matrix.
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$
$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$
such that $k-jnleq n$.
If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$
If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.
$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$
Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$
$rule18cm1pt$
I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?
linear-algebra proof-verification
$endgroup$
Let $A$ be an $ntimes n$ complex matrix, and suppose that $A^nneq 0$. Prove that $A^kneq0;forall;kinmathbbN$.
$rule18cm1pt$
My arguments $textbf1$:
Let $O_ntimes n$ is the zero matrix.
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$k<n$ then, $$A^n=A^kcdot A^n-k=O_ntimes n;text as; A^k=O_ntimes n RightarrowLeftarrow A^nneq O_ntimes n$$
$k>n$ then, $$beginalignA^k&=A^ncdot A^k-n\ &= A^ncdot A^ncdot A^k-2n tagif $k-n>n$\ & quadqquadvdots\
&=A^ncdot A^ncdots A^ncdot A^k-jntag1endalign$$
such that $k-jnleq n$.
If $k-jn=n$ then $(1)implies$ $A^k=(A^n)^m$ for some $minmathbbN$.
$$0=det(A^k)=det((A^n)^m)=(det(A^n))^mimplies det(A^n)=0RightarrowLeftarrow det(A^n)neq0$$
If $k-jn<n$ then, $(1)implies$ $A^k=(A^n)^mcdot A^k-jn$ for some $minmathbbN$.
$$displaystyle 0=det(A^k)=det((A^n)^mcdot A^k-jn)=(det(A^n))^mcdot (det(A))^k-jn$$ $$oversetdet(A^n)neq0implies (det(A))^k-jn=0implies det(A)=0 RightarrowLeftarrow det(A)neq0$$
Hence the statement.
$rule18cm0.5pt$
My arguments $textbf2$:
Since $A^nneq O_ntimes nimplies det(A^n)neq0implies (det(A))^nneq0 oversetdet(A)inmathbbCimplies det(A)neq0$. $Aneq O_ntimes n$ as $det(O_ntimes n)=0.$ Suppose $A^k=O_ntimes n$ for some $kinmathbbN$. $kneq n$ else this contradicts the statement.
$$det(A^k)=0oversetdet(A)inmathbbCimplies det(A)=0RightarrowLeftarrow det(A)neq0$$
$rule18cm1pt$
I feel that my arguments in $textbf1$ are circular while in $textbf2$ are insufficient. Could anyone tell me which parts can be ommitted in $textbf1$ and comment about $textbf2$?
linear-algebra proof-verification
linear-algebra proof-verification
asked Mar 30 at 16:39
Yadati KiranYadati Kiran
2,0941622
2,0941622
4
$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49
1
$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00
add a comment |
4
$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49
1
$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00
4
4
$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49
$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49
1
1
$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00
$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.
$Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...
$endgroup$
add a comment |
$begingroup$
By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.
$endgroup$
add a comment |
$begingroup$
Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)
The correct arguments I see all use somewhat more advanced concepts.
Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168494%2fan-neq0-implies-ak-neq0-forall-k-in-mathbbn%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.
$Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...
$endgroup$
add a comment |
$begingroup$
In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.
$Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...
$endgroup$
add a comment |
$begingroup$
In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.
$Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...
$endgroup$
In $mathbb C$ all matrices are triangularizable. Therefore, there is a basis s.t. $A=D+N$ where $D$ is diagonal and $N$ nilpotent. If $A^nneq 0$, then $Dneq 0$, and thus $A^kneq 0$ for all $k$.
$Aneq 0$ do not implies that $det(A)neq 0$. For example, $beginpmatrix1&0\0&0endpmatrix$ and many other matrices...
answered Mar 30 at 16:47
user657324user657324
55310
55310
add a comment |
add a comment |
$begingroup$
By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.
$endgroup$
add a comment |
$begingroup$
By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.
$endgroup$
add a comment |
$begingroup$
By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.
$endgroup$
By contradiction assume that for some $k$ we have $A^k=0$ so the polynomial $x^k$ annihilates $A$ and so the minimal polynomial is $x^p$ for some $p$ and the characteristic polynomial is $x^n$. Using Cayley-Hamilton theorem we get $A^n=0$ which is a contradiction.
answered Mar 30 at 16:51
user296113user296113
7,015928
7,015928
add a comment |
add a comment |
$begingroup$
Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)
The correct arguments I see all use somewhat more advanced concepts.
Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.
$endgroup$
add a comment |
$begingroup$
Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)
The correct arguments I see all use somewhat more advanced concepts.
Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.
$endgroup$
add a comment |
$begingroup$
Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)
The correct arguments I see all use somewhat more advanced concepts.
Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.
$endgroup$
Both arguments are wrong at the very start: $A^nne0$ does not imply $det(A^n)ne0$. (Counterexample: $A=beginbmatrix1&0\0&0endbmatrix$.)
The correct arguments I see all use somewhat more advanced concepts.
Hint: Suppose that $A^k=0$. Show that the minimal polynomial for $A$ must be $m(t)=t^j$ for some $j$. Show that $jle n$; hence $A^j=0$ implies $A^n=0$.
answered Mar 30 at 16:59
David C. UllrichDavid C. Ullrich
61.7k44095
61.7k44095
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168494%2fan-neq0-implies-ak-neq0-forall-k-in-mathbbn%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
The implication $A^nneq O_nxnRightarrowdet(A^n)neq0$ seems dangerously wrong to me.
$endgroup$
– Thorgott
Mar 30 at 16:49
1
$begingroup$
@Thorgott : I was not feeling right about this proof. Thanks for pointing out the mistake. I did prove it using minimal polynomial though but thought of trying to use the determinant argument which was futile from the outset.
$endgroup$
– Yadati Kiran
Mar 30 at 17:00