Discrete random variable-expected value The 2019 Stack Overflow Developer Survey Results Are InCDF of a discrete random variable?Show that $E(Y|X)(omega):=sum_xin X(Omega)E(Y|X=x)chi_leftX=xright(omega)$ is a discrete random variableDefinition of Discrete Random VariableThe transformation of a random discrete variable.Expectation of a discrete function of a continuous random variableEquation for the expected value of a discrete random variableDiscrete Probability: Expected value of random variableExpected Value using the indicator random variableContinuous Random Variable: Distribution Function & Expected ValueThrow a dice-expected value.

How to notate time signature switching consistently every measure

A poker game description that does not feel gimmicky

Are there incongruent pythagorean triangles with the same perimeter and same area?

Resizing object distorts it (Illustrator CC 2018)

Return to UK after being refused entry years previously

What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?

Is there a symbol for a right arrow with a square in the middle?

Button changing it's text & action. Good or terrible?

FPGA - DIY Programming

Identify boardgame from Big movie

Is three citations per paragraph excessive for undergraduate research paper?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Is "plugging out" electronic devices an American expression?

Time travel alters history but people keep saying nothing's changed

Loose spokes after only a few rides

How are circuits which use complex ICs normally simulated?

Have you ever entered Singapore using a different passport or name?

Why not take a picture of a closer black hole?

One word riddle: Vowel in the middle

The difference between dialogue marks

What do hard-Brexiteers want with respect to the Irish border?

Shouldn't "much" here be used instead of "more"?

Worn-tile Scrabble

How technical should a Scrum Master be to effectively remove impediments?



Discrete random variable-expected value



The 2019 Stack Overflow Developer Survey Results Are InCDF of a discrete random variable?Show that $E(Y|X)(omega):=sum_xin X(Omega)E(Y|X=x)chi_leftX=xright(omega)$ is a discrete random variableDefinition of Discrete Random VariableThe transformation of a random discrete variable.Expectation of a discrete function of a continuous random variableEquation for the expected value of a discrete random variableDiscrete Probability: Expected value of random variableExpected Value using the indicator random variableContinuous Random Variable: Distribution Function & Expected ValueThrow a dice-expected value.










0












$begingroup$


For each discrete random variable $X$ and a measurable set $B$, for which $P [B]> 0$,
show that
$E [X | B] = fracE [1_BX]
P [B]$
. I have $E [X | B] = fracsum x_i * P(X=x_i cap B)
P [B]$
and I don't know what next.










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    For each discrete random variable $X$ and a measurable set $B$, for which $P [B]> 0$,
    show that
    $E [X | B] = fracE [1_BX]
    P [B]$
    . I have $E [X | B] = fracsum x_i * P(X=x_i cap B)
    P [B]$
    and I don't know what next.










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      For each discrete random variable $X$ and a measurable set $B$, for which $P [B]> 0$,
      show that
      $E [X | B] = fracE [1_BX]
      P [B]$
      . I have $E [X | B] = fracsum x_i * P(X=x_i cap B)
      P [B]$
      and I don't know what next.










      share|cite|improve this question











      $endgroup$




      For each discrete random variable $X$ and a measurable set $B$, for which $P [B]> 0$,
      show that
      $E [X | B] = fracE [1_BX]
      P [B]$
      . I have $E [X | B] = fracsum x_i * P(X=x_i cap B)
      P [B]$
      and I don't know what next.







      random-variables conditional-expectation expected-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 20:20









      Ernie060

      2,940719




      2,940719










      asked Mar 30 at 17:04









      KingisKingis

      65




      65




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          $fracE[X 1_B]p[B]=fracsum_omega in Omega x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in Bcup B^c x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in B x times 1_Btimes P(X=x )+0
          P [B]=fracsum_omega in B x times P(X=x )
          P [B]=fracsum_omega in B x times P(X=x cap omega in B )
          P [B]=fracsum_omega in Omega x times P(X=x cap omega in B )
          P [B]=sum_omega in Omega x times fracP(X=x cap omega in BP [B] )=sum_omega in Omega x times P(X=x|B )=E(X|B)$



          another way



          $fracE[X 1_B]p[B]=fracEE[X 1_Bp[B]$



          $=fracE(XE[1_Bp[B]=fracE(Xg(X))p[B]$



          $=fracsum_x x g(x) p(X=x)p[B]=fracX=x) p(X=x)p[B]$



          $=fracsum_x x p(Bp[B]$



          $=fracsum_x x p(X=xp[B]$



          $=fracB) p[B]$



          $=sum_x x p(X=x|B)=E(X|B)$



          note that $E[1_B|X]$ is a random variable that it is a function of $X$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            What did you prove?
            $endgroup$
            – Kingis
            Mar 30 at 17:36










          • $begingroup$
            I edited it. is it what you want or not?
            $endgroup$
            – masoud
            Mar 30 at 19:15










          • $begingroup$
            Why do you use $omega$?
            $endgroup$
            – Kingis
            Mar 30 at 19:28










          • $begingroup$
            since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
            $endgroup$
            – masoud
            Mar 30 at 19:32











          • $begingroup$
            okey but i must write probably $omega$ im my equation when i have X
            $endgroup$
            – Kingis
            Mar 30 at 19:47











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168530%2fdiscrete-random-variable-expected-value%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          $fracE[X 1_B]p[B]=fracsum_omega in Omega x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in Bcup B^c x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in B x times 1_Btimes P(X=x )+0
          P [B]=fracsum_omega in B x times P(X=x )
          P [B]=fracsum_omega in B x times P(X=x cap omega in B )
          P [B]=fracsum_omega in Omega x times P(X=x cap omega in B )
          P [B]=sum_omega in Omega x times fracP(X=x cap omega in BP [B] )=sum_omega in Omega x times P(X=x|B )=E(X|B)$



          another way



          $fracE[X 1_B]p[B]=fracEE[X 1_Bp[B]$



          $=fracE(XE[1_Bp[B]=fracE(Xg(X))p[B]$



          $=fracsum_x x g(x) p(X=x)p[B]=fracX=x) p(X=x)p[B]$



          $=fracsum_x x p(Bp[B]$



          $=fracsum_x x p(X=xp[B]$



          $=fracB) p[B]$



          $=sum_x x p(X=x|B)=E(X|B)$



          note that $E[1_B|X]$ is a random variable that it is a function of $X$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            What did you prove?
            $endgroup$
            – Kingis
            Mar 30 at 17:36










          • $begingroup$
            I edited it. is it what you want or not?
            $endgroup$
            – masoud
            Mar 30 at 19:15










          • $begingroup$
            Why do you use $omega$?
            $endgroup$
            – Kingis
            Mar 30 at 19:28










          • $begingroup$
            since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
            $endgroup$
            – masoud
            Mar 30 at 19:32











          • $begingroup$
            okey but i must write probably $omega$ im my equation when i have X
            $endgroup$
            – Kingis
            Mar 30 at 19:47















          1












          $begingroup$

          $fracE[X 1_B]p[B]=fracsum_omega in Omega x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in Bcup B^c x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in B x times 1_Btimes P(X=x )+0
          P [B]=fracsum_omega in B x times P(X=x )
          P [B]=fracsum_omega in B x times P(X=x cap omega in B )
          P [B]=fracsum_omega in Omega x times P(X=x cap omega in B )
          P [B]=sum_omega in Omega x times fracP(X=x cap omega in BP [B] )=sum_omega in Omega x times P(X=x|B )=E(X|B)$



          another way



          $fracE[X 1_B]p[B]=fracEE[X 1_Bp[B]$



          $=fracE(XE[1_Bp[B]=fracE(Xg(X))p[B]$



          $=fracsum_x x g(x) p(X=x)p[B]=fracX=x) p(X=x)p[B]$



          $=fracsum_x x p(Bp[B]$



          $=fracsum_x x p(X=xp[B]$



          $=fracB) p[B]$



          $=sum_x x p(X=x|B)=E(X|B)$



          note that $E[1_B|X]$ is a random variable that it is a function of $X$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            What did you prove?
            $endgroup$
            – Kingis
            Mar 30 at 17:36










          • $begingroup$
            I edited it. is it what you want or not?
            $endgroup$
            – masoud
            Mar 30 at 19:15










          • $begingroup$
            Why do you use $omega$?
            $endgroup$
            – Kingis
            Mar 30 at 19:28










          • $begingroup$
            since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
            $endgroup$
            – masoud
            Mar 30 at 19:32











          • $begingroup$
            okey but i must write probably $omega$ im my equation when i have X
            $endgroup$
            – Kingis
            Mar 30 at 19:47













          1












          1








          1





          $begingroup$

          $fracE[X 1_B]p[B]=fracsum_omega in Omega x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in Bcup B^c x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in B x times 1_Btimes P(X=x )+0
          P [B]=fracsum_omega in B x times P(X=x )
          P [B]=fracsum_omega in B x times P(X=x cap omega in B )
          P [B]=fracsum_omega in Omega x times P(X=x cap omega in B )
          P [B]=sum_omega in Omega x times fracP(X=x cap omega in BP [B] )=sum_omega in Omega x times P(X=x|B )=E(X|B)$



          another way



          $fracE[X 1_B]p[B]=fracEE[X 1_Bp[B]$



          $=fracE(XE[1_Bp[B]=fracE(Xg(X))p[B]$



          $=fracsum_x x g(x) p(X=x)p[B]=fracX=x) p(X=x)p[B]$



          $=fracsum_x x p(Bp[B]$



          $=fracsum_x x p(X=xp[B]$



          $=fracB) p[B]$



          $=sum_x x p(X=x|B)=E(X|B)$



          note that $E[1_B|X]$ is a random variable that it is a function of $X$.






          share|cite|improve this answer











          $endgroup$



          $fracE[X 1_B]p[B]=fracsum_omega in Omega x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in Bcup B^c x times 1_Btimes P(X=x )
          P [B]=fracsum_omega in B x times 1_Btimes P(X=x )+0
          P [B]=fracsum_omega in B x times P(X=x )
          P [B]=fracsum_omega in B x times P(X=x cap omega in B )
          P [B]=fracsum_omega in Omega x times P(X=x cap omega in B )
          P [B]=sum_omega in Omega x times fracP(X=x cap omega in BP [B] )=sum_omega in Omega x times P(X=x|B )=E(X|B)$



          another way



          $fracE[X 1_B]p[B]=fracEE[X 1_Bp[B]$



          $=fracE(XE[1_Bp[B]=fracE(Xg(X))p[B]$



          $=fracsum_x x g(x) p(X=x)p[B]=fracX=x) p(X=x)p[B]$



          $=fracsum_x x p(Bp[B]$



          $=fracsum_x x p(X=xp[B]$



          $=fracB) p[B]$



          $=sum_x x p(X=x|B)=E(X|B)$



          note that $E[1_B|X]$ is a random variable that it is a function of $X$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 31 at 13:12

























          answered Mar 30 at 17:26









          masoudmasoud

          3228




          3228











          • $begingroup$
            What did you prove?
            $endgroup$
            – Kingis
            Mar 30 at 17:36










          • $begingroup$
            I edited it. is it what you want or not?
            $endgroup$
            – masoud
            Mar 30 at 19:15










          • $begingroup$
            Why do you use $omega$?
            $endgroup$
            – Kingis
            Mar 30 at 19:28










          • $begingroup$
            since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
            $endgroup$
            – masoud
            Mar 30 at 19:32











          • $begingroup$
            okey but i must write probably $omega$ im my equation when i have X
            $endgroup$
            – Kingis
            Mar 30 at 19:47
















          • $begingroup$
            What did you prove?
            $endgroup$
            – Kingis
            Mar 30 at 17:36










          • $begingroup$
            I edited it. is it what you want or not?
            $endgroup$
            – masoud
            Mar 30 at 19:15










          • $begingroup$
            Why do you use $omega$?
            $endgroup$
            – Kingis
            Mar 30 at 19:28










          • $begingroup$
            since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
            $endgroup$
            – masoud
            Mar 30 at 19:32











          • $begingroup$
            okey but i must write probably $omega$ im my equation when i have X
            $endgroup$
            – Kingis
            Mar 30 at 19:47















          $begingroup$
          What did you prove?
          $endgroup$
          – Kingis
          Mar 30 at 17:36




          $begingroup$
          What did you prove?
          $endgroup$
          – Kingis
          Mar 30 at 17:36












          $begingroup$
          I edited it. is it what you want or not?
          $endgroup$
          – masoud
          Mar 30 at 19:15




          $begingroup$
          I edited it. is it what you want or not?
          $endgroup$
          – masoud
          Mar 30 at 19:15












          $begingroup$
          Why do you use $omega$?
          $endgroup$
          – Kingis
          Mar 30 at 19:28




          $begingroup$
          Why do you use $omega$?
          $endgroup$
          – Kingis
          Mar 30 at 19:28












          $begingroup$
          since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
          $endgroup$
          – masoud
          Mar 30 at 19:32





          $begingroup$
          since $E(X 1_B)=E(X 1_B(omega))$ , $B$ is a measurable set so $B in F$ in the probability space $(Omega, F ,P)$ (so $Bsubset Omega$ such that $Bin F$
          $endgroup$
          – masoud
          Mar 30 at 19:32













          $begingroup$
          okey but i must write probably $omega$ im my equation when i have X
          $endgroup$
          – Kingis
          Mar 30 at 19:47




          $begingroup$
          okey but i must write probably $omega$ im my equation when i have X
          $endgroup$
          – Kingis
          Mar 30 at 19:47

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168530%2fdiscrete-random-variable-expected-value%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

          Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε