Skip to main content

Sérbia Menu de nabegaçone

Multi tool use
Multi tool use

Sérbia


paíçcapitalBelgradoOuroparegion balcánicaMontenegroBósnia i HeirzegobinaCroáciaMacedóniaAlbániaRoméniaBulgáriaHungrie












Sérbia




Ourige: Biquipédia, la anciclopédia lhibre.






Saltar para a navegação
Saltar para a pesquisa




Bandeira de Sérbia.


La Sérbia ó República de la Sérbia (an sérbio: Република Србија, trasl. Republika Srbija), ye un paíç ouropeu, cuja capital ye Belgrado, lhocalizado ne l sudeste de la Ouropa, na region balcánica. Faç frunteira la sudoeste cun Montenegro, paíç de l qual se separou an 2006, l'oeste cula Bósnia i Heirzegobina, la noroiste cula Croácia, al sul cula Macedónia i cula Albánia, al lheste cula Roménia i cula Bulgária i al norte cula Hungrie.










Sacado an "https://mwl.wikipedia.org/w/index.php?title=Sérbia&oldid=93583"










Menu de nabegaçon



























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.044","walltime":"0.062","ppvisitednodes":"value":707,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":9726,"limit":2097152,"templateargumentsize":"value":5619,"limit":2097152,"expansiondepth":"value":12,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 43.226 1 Modelo:Paízes_de_la_Ouropa","100.00% 43.226 1 -total"," 94.17% 40.706 1 Modelo:Navbox"," 65.11% 28.144 1 Modelo:Navbox/core"," 14.63% 6.324 1 Modelo:Tnavbar"," 6.19% 2.676 2 Modelo:Transclude"," 4.07% 1.760 1 Modelo:Lhimpar"],"cachereport":"origin":"mw1324","timestamp":"20190321081220","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Su00e9rbia","url":"https://mwl.wikipedia.org/wiki/S%C3%A9rbia","sameAs":"http://www.wikidata.org/entity/Q403","mainEntity":"http://www.wikidata.org/entity/Q403","author":"@type":"Organization","name":"Contribuidores dos projetos da Wikimedia","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2017-07-19T20:39:55Z","dateModified":"2018-04-22T14:03:40Z","image":"https://upload.wikimedia.org/wikipedia/commons/f/ff/Flag_of_Serbia.svg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":166,"wgHostname":"mw1327"););tkqRX3TK DuZ,LDcUQ9FyIsNLway5VbmNv,P8EF,cSGFSmsF ux5tn,Ts2FYL UQx2yyhbBZcQ
w b vAl,PP,Feh4Uihj ZVz W13gUaxjGLAyGo9WbW8LCyXKuafK2xv4fJ f8pB2PiS

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?