Doubt regarding the projection along new basis The 2019 Stack Overflow Developer Survey Results Are InIs the perpendicular vector in a projection part of the nullspace?find the projection of a vector on a line using the projection formulaProjection of $V$ onto $U$ along $T$ ?How to find the projection of something onto V?How Can I find the coordinates of a point, if I know its projection vector?Finding the projection of a 3D vector along the direction of (i-j)Compute the angle between two vectors if two equations are knownI need to find the projection of a vector onto the plane perpendicular to some other vector.Solve for length of vector so its sum with another vector has a given lengthIs there a formula for coefficients of a given vector written in terms of the basis?
Did 3000BC Egyptians use meteoric iron weapons?
Protecting Dualbooting Windows from dangerous code (like rm -rf)
One word riddle: Vowel in the middle
Why not take a picture of a closer black hole?
How to deal with fear of taking dependencies
Loose spokes after only a few rides
How are circuits which use complex ICs normally simulated?
Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?
Earliest use of the term "Galois extension"?
What is the closest word meaning "respect for time / mindful"
What does ひと匙 mean in this manga and has it been used colloquially?
Is there any way to tell whether the shot is going to hit you or not?
If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
Can we generate random numbers using irrational numbers like π and e?
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
Button changing it's text & action. Good or terrible?
Can a flute soloist sit?
If a Druid sees an animal’s corpse, can they wild shape into that animal?
Is bread bad for ducks?
The difference between dialogue marks
During Temple times, who can butcher a kosher animal?
Return to UK after being refused entry years previously
When should I buy a clipper card after flying to OAK?
Doubt regarding the projection along new basis
The 2019 Stack Overflow Developer Survey Results Are InIs the perpendicular vector in a projection part of the nullspace?find the projection of a vector on a line using the projection formulaProjection of $V$ onto $U$ along $T$ ?How to find the projection of something onto V?How Can I find the coordinates of a point, if I know its projection vector?Finding the projection of a 3D vector along the direction of (i-j)Compute the angle between two vectors if two equations are knownI need to find the projection of a vector onto the plane perpendicular to some other vector.Solve for length of vector so its sum with another vector has a given lengthIs there a formula for coefficients of a given vector written in terms of the basis?
$begingroup$
I am trying to solve the following problem.
As per my understanding, the scalar projection of $vecp$ along $vecb1$ should be
$vecp$ . $vecb1$ / |$vecb1$|
Then why do we divide by |$vecb1$| twice? To get the correct answer we need to use the following formula instead, but why:
$vecp$ . $vecb1$ / |$vecb1$||$vecb1$|
linear-algebra vector-spaces vectors
$endgroup$
add a comment |
$begingroup$
I am trying to solve the following problem.
As per my understanding, the scalar projection of $vecp$ along $vecb1$ should be
$vecp$ . $vecb1$ / |$vecb1$|
Then why do we divide by |$vecb1$| twice? To get the correct answer we need to use the following formula instead, but why:
$vecp$ . $vecb1$ / |$vecb1$||$vecb1$|
linear-algebra vector-spaces vectors
$endgroup$
$begingroup$
You are correct about the formula for the scalar projection, but the scalar projection is different from the coordinate.
$endgroup$
– jgon
Mar 30 at 18:07
add a comment |
$begingroup$
I am trying to solve the following problem.
As per my understanding, the scalar projection of $vecp$ along $vecb1$ should be
$vecp$ . $vecb1$ / |$vecb1$|
Then why do we divide by |$vecb1$| twice? To get the correct answer we need to use the following formula instead, but why:
$vecp$ . $vecb1$ / |$vecb1$||$vecb1$|
linear-algebra vector-spaces vectors
$endgroup$
I am trying to solve the following problem.
As per my understanding, the scalar projection of $vecp$ along $vecb1$ should be
$vecp$ . $vecb1$ / |$vecb1$|
Then why do we divide by |$vecb1$| twice? To get the correct answer we need to use the following formula instead, but why:
$vecp$ . $vecb1$ / |$vecb1$||$vecb1$|
linear-algebra vector-spaces vectors
linear-algebra vector-spaces vectors
asked Mar 30 at 17:07
TouchstoneTouchstone
1063
1063
$begingroup$
You are correct about the formula for the scalar projection, but the scalar projection is different from the coordinate.
$endgroup$
– jgon
Mar 30 at 18:07
add a comment |
$begingroup$
You are correct about the formula for the scalar projection, but the scalar projection is different from the coordinate.
$endgroup$
– jgon
Mar 30 at 18:07
$begingroup$
You are correct about the formula for the scalar projection, but the scalar projection is different from the coordinate.
$endgroup$
– jgon
Mar 30 at 18:07
$begingroup$
You are correct about the formula for the scalar projection, but the scalar projection is different from the coordinate.
$endgroup$
– jgon
Mar 30 at 18:07
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Rather than using the formula above, I would say:
$v = c_1 b_1 + c_2 b_2\
c_1 + c_2 = 5\
c_1 - c_2 = -1$
And now I have a rather simple system of equations.
At a deeper level of understanding, I might say:
$T = beginbmatrix 1 & 1 \ 1 & -1endbmatrix$ would be a transformation from the basis $B$ to the standard basis.
In which chase $T^-1v$ would transform v in the standard basis to the basis $B.$
As for what you have in your formula above.
We take $b_1$ and we normalize it.
i.e. $u_1 = frac b_1$
Then we calculate the dot product.
$vcdot u_1$ giving us a magnitude in this direction. Multiply by the direction vector
$(vcdot u_1) u_1$
Substituting back
$(vcdot u_1) u_1$ = $(vcdot frac b_1) frac b_1 = frac vcdot b_1b_1$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168532%2fdoubt-regarding-the-projection-along-new-basis%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rather than using the formula above, I would say:
$v = c_1 b_1 + c_2 b_2\
c_1 + c_2 = 5\
c_1 - c_2 = -1$
And now I have a rather simple system of equations.
At a deeper level of understanding, I might say:
$T = beginbmatrix 1 & 1 \ 1 & -1endbmatrix$ would be a transformation from the basis $B$ to the standard basis.
In which chase $T^-1v$ would transform v in the standard basis to the basis $B.$
As for what you have in your formula above.
We take $b_1$ and we normalize it.
i.e. $u_1 = frac b_1$
Then we calculate the dot product.
$vcdot u_1$ giving us a magnitude in this direction. Multiply by the direction vector
$(vcdot u_1) u_1$
Substituting back
$(vcdot u_1) u_1$ = $(vcdot frac b_1) frac b_1 = frac vcdot b_1b_1$
$endgroup$
add a comment |
$begingroup$
Rather than using the formula above, I would say:
$v = c_1 b_1 + c_2 b_2\
c_1 + c_2 = 5\
c_1 - c_2 = -1$
And now I have a rather simple system of equations.
At a deeper level of understanding, I might say:
$T = beginbmatrix 1 & 1 \ 1 & -1endbmatrix$ would be a transformation from the basis $B$ to the standard basis.
In which chase $T^-1v$ would transform v in the standard basis to the basis $B.$
As for what you have in your formula above.
We take $b_1$ and we normalize it.
i.e. $u_1 = frac b_1$
Then we calculate the dot product.
$vcdot u_1$ giving us a magnitude in this direction. Multiply by the direction vector
$(vcdot u_1) u_1$
Substituting back
$(vcdot u_1) u_1$ = $(vcdot frac b_1) frac b_1 = frac vcdot b_1b_1$
$endgroup$
add a comment |
$begingroup$
Rather than using the formula above, I would say:
$v = c_1 b_1 + c_2 b_2\
c_1 + c_2 = 5\
c_1 - c_2 = -1$
And now I have a rather simple system of equations.
At a deeper level of understanding, I might say:
$T = beginbmatrix 1 & 1 \ 1 & -1endbmatrix$ would be a transformation from the basis $B$ to the standard basis.
In which chase $T^-1v$ would transform v in the standard basis to the basis $B.$
As for what you have in your formula above.
We take $b_1$ and we normalize it.
i.e. $u_1 = frac b_1$
Then we calculate the dot product.
$vcdot u_1$ giving us a magnitude in this direction. Multiply by the direction vector
$(vcdot u_1) u_1$
Substituting back
$(vcdot u_1) u_1$ = $(vcdot frac b_1) frac b_1 = frac vcdot b_1b_1$
$endgroup$
Rather than using the formula above, I would say:
$v = c_1 b_1 + c_2 b_2\
c_1 + c_2 = 5\
c_1 - c_2 = -1$
And now I have a rather simple system of equations.
At a deeper level of understanding, I might say:
$T = beginbmatrix 1 & 1 \ 1 & -1endbmatrix$ would be a transformation from the basis $B$ to the standard basis.
In which chase $T^-1v$ would transform v in the standard basis to the basis $B.$
As for what you have in your formula above.
We take $b_1$ and we normalize it.
i.e. $u_1 = frac b_1$
Then we calculate the dot product.
$vcdot u_1$ giving us a magnitude in this direction. Multiply by the direction vector
$(vcdot u_1) u_1$
Substituting back
$(vcdot u_1) u_1$ = $(vcdot frac b_1) frac b_1 = frac vcdot b_1b_1$
answered Mar 30 at 17:22
Doug MDoug M
1,848412
1,848412
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168532%2fdoubt-regarding-the-projection-along-new-basis%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You are correct about the formula for the scalar projection, but the scalar projection is different from the coordinate.
$endgroup$
– jgon
Mar 30 at 18:07