An equality: from one sum to 2 sums. The 2019 Stack Overflow Developer Survey Results Are InInfinite Geometric SumDonald Knuth and algebraic operations on sumsSums of infinite seriessum of Problem from Olympiad from bookNice equality involving summation, factorials, and $e$Getting from $sum_n=1^inftyfrac2n3^n+1$ to $frac23sum_n=1^inftysum_m=n^inftyfrac13^m$Transformed Sum questionHow to show the equivalence of these two sums?How to prove equality of sum of Legendre symbolsExpected value sum identity

Output the Arecibo Message

Feature engineering suggestion required

What is the closest word meaning "respect for time / mindful"

Time travel alters history but people keep saying nothing's changed

What do hard-Brexiteers want with respect to the Irish border?

Protecting Dualbooting Windows from dangerous code (like rm -rf)

Are spiders unable to hurt humans, especially very small spiders?

A poker game description that does not feel gimmicky

Should I use my personal e-mail address, or my workplace one, when registering to external websites for work purposes?

Are there any other methods to apply to solving simultaneous equations?

Is "plugging out" electronic devices an American expression?

One word riddle: Vowel in the middle

What is the meaning of Triage in Cybersec world?

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

Why can Shazam fly?

Deal with toxic manager when you can't quit

Pokemon Turn Based battle (Python)

Where to refill my bottle in India?

Can we generate random numbers using irrational numbers like π and e?

Have you ever entered Singapore using a different passport or name?

The difference between dialogue marks

Shouldn't "much" here be used instead of "more"?

Is flight data recorder erased after every flight?

What is the accessibility of a package's `Private` context variables?



An equality: from one sum to 2 sums.



The 2019 Stack Overflow Developer Survey Results Are InInfinite Geometric SumDonald Knuth and algebraic operations on sumsSums of infinite seriessum of Problem from Olympiad from bookNice equality involving summation, factorials, and $e$Getting from $sum_n=1^inftyfrac2n3^n+1$ to $frac23sum_n=1^inftysum_m=n^inftyfrac13^m$Transformed Sum questionHow to show the equivalence of these two sums?How to prove equality of sum of Legendre symbolsExpected value sum identity










0












$begingroup$


I have an equality:
$$
ddota_30 = frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
$$



How from $frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)$ we get $left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right) ?$



Because I do not understand where we lost $frac10,75$ in the first sum.










share|cite|improve this question









$endgroup$











  • $begingroup$
    probably worth noting that $0.75 times 120=90$ and that $120-30=90$
    $endgroup$
    – Henry
    Mar 30 at 18:23










  • $begingroup$
    Hint: The product of $frac10.75$ and $left( 1 - frac30+k120right) $ is $frac10.75-frac10.75cdot frac30120-frac10.75cdot frack120=frac10.75cdot frac120120-frac10.75cdot frac30120-frac10.75cdot frack120$ $=frac900.75cdot 120-frack0.75cdot 120=1-frack0.75cdot 120$
    $endgroup$
    – callculus
    Mar 30 at 18:33















0












$begingroup$


I have an equality:
$$
ddota_30 = frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
$$



How from $frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)$ we get $left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right) ?$



Because I do not understand where we lost $frac10,75$ in the first sum.










share|cite|improve this question









$endgroup$











  • $begingroup$
    probably worth noting that $0.75 times 120=90$ and that $120-30=90$
    $endgroup$
    – Henry
    Mar 30 at 18:23










  • $begingroup$
    Hint: The product of $frac10.75$ and $left( 1 - frac30+k120right) $ is $frac10.75-frac10.75cdot frac30120-frac10.75cdot frack120=frac10.75cdot frac120120-frac10.75cdot frac30120-frac10.75cdot frack120$ $=frac900.75cdot 120-frack0.75cdot 120=1-frack0.75cdot 120$
    $endgroup$
    – callculus
    Mar 30 at 18:33













0












0








0





$begingroup$


I have an equality:
$$
ddota_30 = frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
$$



How from $frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)$ we get $left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right) ?$



Because I do not understand where we lost $frac10,75$ in the first sum.










share|cite|improve this question









$endgroup$




I have an equality:
$$
ddota_30 = frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
$$



How from $frac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)$ we get $left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right) ?$



Because I do not understand where we lost $frac10,75$ in the first sum.







summation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 30 at 18:13









PhilipPhilip

917




917











  • $begingroup$
    probably worth noting that $0.75 times 120=90$ and that $120-30=90$
    $endgroup$
    – Henry
    Mar 30 at 18:23










  • $begingroup$
    Hint: The product of $frac10.75$ and $left( 1 - frac30+k120right) $ is $frac10.75-frac10.75cdot frac30120-frac10.75cdot frack120=frac10.75cdot frac120120-frac10.75cdot frac30120-frac10.75cdot frack120$ $=frac900.75cdot 120-frack0.75cdot 120=1-frack0.75cdot 120$
    $endgroup$
    – callculus
    Mar 30 at 18:33
















  • $begingroup$
    probably worth noting that $0.75 times 120=90$ and that $120-30=90$
    $endgroup$
    – Henry
    Mar 30 at 18:23










  • $begingroup$
    Hint: The product of $frac10.75$ and $left( 1 - frac30+k120right) $ is $frac10.75-frac10.75cdot frac30120-frac10.75cdot frack120=frac10.75cdot frac120120-frac10.75cdot frac30120-frac10.75cdot frack120$ $=frac900.75cdot 120-frack0.75cdot 120=1-frack0.75cdot 120$
    $endgroup$
    – callculus
    Mar 30 at 18:33















$begingroup$
probably worth noting that $0.75 times 120=90$ and that $120-30=90$
$endgroup$
– Henry
Mar 30 at 18:23




$begingroup$
probably worth noting that $0.75 times 120=90$ and that $120-30=90$
$endgroup$
– Henry
Mar 30 at 18:23












$begingroup$
Hint: The product of $frac10.75$ and $left( 1 - frac30+k120right) $ is $frac10.75-frac10.75cdot frac30120-frac10.75cdot frack120=frac10.75cdot frac120120-frac10.75cdot frac30120-frac10.75cdot frack120$ $=frac900.75cdot 120-frack0.75cdot 120=1-frack0.75cdot 120$
$endgroup$
– callculus
Mar 30 at 18:33




$begingroup$
Hint: The product of $frac10.75$ and $left( 1 - frac30+k120right) $ is $frac10.75-frac10.75cdot frac30120-frac10.75cdot frack120=frac10.75cdot frac120120-frac10.75cdot frac30120-frac10.75cdot frack120$ $=frac900.75cdot 120-frack0.75cdot 120=1-frack0.75cdot 120$
$endgroup$
– callculus
Mar 30 at 18:33










1 Answer
1






active

oldest

votes


















0












$begingroup$

beginalignfrac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)&= frac43left( sum_k=0^infty left(frac11.06right)^k left( frac34 - frack120right) right)
\&=left( sum_k=0^infty left(frac11.06right)^k left( 1 - frack90right) right)
\&=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
endalign



The $frac43$ and the $frac34$ cancels out.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168595%2fan-equality-from-one-sum-to-2-sums%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    beginalignfrac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)&= frac43left( sum_k=0^infty left(frac11.06right)^k left( frac34 - frack120right) right)
    \&=left( sum_k=0^infty left(frac11.06right)^k left( 1 - frack90right) right)
    \&=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
    endalign



    The $frac43$ and the $frac34$ cancels out.






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      beginalignfrac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)&= frac43left( sum_k=0^infty left(frac11.06right)^k left( frac34 - frack120right) right)
      \&=left( sum_k=0^infty left(frac11.06right)^k left( 1 - frack90right) right)
      \&=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
      endalign



      The $frac43$ and the $frac34$ cancels out.






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        beginalignfrac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)&= frac43left( sum_k=0^infty left(frac11.06right)^k left( frac34 - frack120right) right)
        \&=left( sum_k=0^infty left(frac11.06right)^k left( 1 - frack90right) right)
        \&=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
        endalign



        The $frac43$ and the $frac34$ cancels out.






        share|cite|improve this answer









        $endgroup$



        beginalignfrac10.75left( sum_k=0^infty left(frac11.06right)^k left( 1 - frac30+k120right) right)&= frac43left( sum_k=0^infty left(frac11.06right)^k left( frac34 - frack120right) right)
        \&=left( sum_k=0^infty left(frac11.06right)^k left( 1 - frack90right) right)
        \&=left( sum_k=0^infty left(frac11.06right)^k - frac190 sum_k=0^infty kleft(frac11.06right)^k right)
        endalign



        The $frac43$ and the $frac34$ cancels out.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 30 at 18:22









        Siong Thye GohSiong Thye Goh

        104k1468120




        104k1468120



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168595%2fan-equality-from-one-sum-to-2-sums%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

            Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε