What's the formula for partitions where each group has a different size? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How does distinguishability of boxes change the number of ways to distribute n objects into separate boxesHow many different sets of groups can be formed so that nobody ever has the same group mates?Partitioning $n$ objects into $k$ boxesGroup forming when the group size is equalSample, randomly & uniformly the partitioning of $n$ objects into $K$ groupsArgue that $binomnn_1,n_2,…,n_r = binomn-1n_1-1,n_2,…,n_r + binomn-1n_1,n_2-1,…,n_r+…+binomn-1n_1,n_2,…,n_r-1 $C compositions of $N$ balls grouped in k types given first and/or last offset …How many ordered sequences of length $n$ can we make with $n_i$ identical objects of each type $i$?Probability that two particular items are grouped in a random partition with fixed sizesAre Complete Sequences Also Sets with Distinct Subset Sums? (Prime Numbers)Number of ways to divide a group of n people into groups of size m to m-1

Is there public access to the Meteor Crater in Arizona?

AppleTVs create a chatty alternate WiFi network

How did Fremen produce and carry enough thumpers to use Sandworms as de facto Ubers?

What to do with repeated rejections for phd position

Would it be easier to apply for a UK visa if there is a host family to sponsor for you in going there?

Google .dev domain strangely redirects to https

Random body shuffle every night—can we still function?

Is it fair for a professor to grade us on the possession of past papers?

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

How long can equipment go unused before powering up runs the risk of damage?

What order were files/directories output in dir?

How to report t statistic from R

preposition before coffee

Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?

Significance of Cersei's obsession with elephants?

Semigroups with no morphisms between them

Is multiple magic items in one inherently imbalanced?

What does it mean that physics no longer uses mechanical models to describe phenomena?

Flash light on something

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Deconstruction is ambiguous

What makes a man succeed?

Why are my pictures showing a dark band on one edge?

Project Euler #1 in C++



What's the formula for partitions where each group has a different size?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How does distinguishability of boxes change the number of ways to distribute n objects into separate boxesHow many different sets of groups can be formed so that nobody ever has the same group mates?Partitioning $n$ objects into $k$ boxesGroup forming when the group size is equalSample, randomly & uniformly the partitioning of $n$ objects into $K$ groupsArgue that $binomnn_1,n_2,…,n_r = binomn-1n_1-1,n_2,…,n_r + binomn-1n_1,n_2-1,…,n_r+…+binomn-1n_1,n_2,…,n_r-1 $C compositions of $N$ balls grouped in k types given first and/or last offset …How many ordered sequences of length $n$ can we make with $n_i$ identical objects of each type $i$?Probability that two particular items are grouped in a random partition with fixed sizesAre Complete Sequences Also Sets with Distinct Subset Sums? (Prime Numbers)Number of ways to divide a group of n people into groups of size m to m-1










1












$begingroup$


I am looking at this formulaenter image description here



My understanding is that the number of partitions is equal to that formula, but only when the order of the partitions matters. eg, That's right, if you can only have $n_1$ in the first group and $n_2$ in the second group and so on.



My understanding is that if the order of the groups does not matter, then it is the same formula except you add $r!$ to the denominator because you need to account for the different orderings that can achieve that result.



Is that right?










share|cite|improve this question









$endgroup$











  • $begingroup$
    That's correct.
    $endgroup$
    – Jair Taylor
    Apr 2 at 1:40










  • $begingroup$
    Does the denominator need to add up to n in the first case?
    $endgroup$
    – Sebastian
    Apr 2 at 2:13










  • $begingroup$
    Yes, you need $sum_i=1^r n_i = n$ since the sizes of the blocks must add up to the size of the set
    $endgroup$
    – Jair Taylor
    Apr 2 at 2:41















1












$begingroup$


I am looking at this formulaenter image description here



My understanding is that the number of partitions is equal to that formula, but only when the order of the partitions matters. eg, That's right, if you can only have $n_1$ in the first group and $n_2$ in the second group and so on.



My understanding is that if the order of the groups does not matter, then it is the same formula except you add $r!$ to the denominator because you need to account for the different orderings that can achieve that result.



Is that right?










share|cite|improve this question









$endgroup$











  • $begingroup$
    That's correct.
    $endgroup$
    – Jair Taylor
    Apr 2 at 1:40










  • $begingroup$
    Does the denominator need to add up to n in the first case?
    $endgroup$
    – Sebastian
    Apr 2 at 2:13










  • $begingroup$
    Yes, you need $sum_i=1^r n_i = n$ since the sizes of the blocks must add up to the size of the set
    $endgroup$
    – Jair Taylor
    Apr 2 at 2:41













1












1








1





$begingroup$


I am looking at this formulaenter image description here



My understanding is that the number of partitions is equal to that formula, but only when the order of the partitions matters. eg, That's right, if you can only have $n_1$ in the first group and $n_2$ in the second group and so on.



My understanding is that if the order of the groups does not matter, then it is the same formula except you add $r!$ to the denominator because you need to account for the different orderings that can achieve that result.



Is that right?










share|cite|improve this question









$endgroup$




I am looking at this formulaenter image description here



My understanding is that the number of partitions is equal to that formula, but only when the order of the partitions matters. eg, That's right, if you can only have $n_1$ in the first group and $n_2$ in the second group and so on.



My understanding is that if the order of the groups does not matter, then it is the same formula except you add $r!$ to the denominator because you need to account for the different orderings that can achieve that result.



Is that right?







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 2 at 1:01









SebastianSebastian

1486




1486











  • $begingroup$
    That's correct.
    $endgroup$
    – Jair Taylor
    Apr 2 at 1:40










  • $begingroup$
    Does the denominator need to add up to n in the first case?
    $endgroup$
    – Sebastian
    Apr 2 at 2:13










  • $begingroup$
    Yes, you need $sum_i=1^r n_i = n$ since the sizes of the blocks must add up to the size of the set
    $endgroup$
    – Jair Taylor
    Apr 2 at 2:41
















  • $begingroup$
    That's correct.
    $endgroup$
    – Jair Taylor
    Apr 2 at 1:40










  • $begingroup$
    Does the denominator need to add up to n in the first case?
    $endgroup$
    – Sebastian
    Apr 2 at 2:13










  • $begingroup$
    Yes, you need $sum_i=1^r n_i = n$ since the sizes of the blocks must add up to the size of the set
    $endgroup$
    – Jair Taylor
    Apr 2 at 2:41















$begingroup$
That's correct.
$endgroup$
– Jair Taylor
Apr 2 at 1:40




$begingroup$
That's correct.
$endgroup$
– Jair Taylor
Apr 2 at 1:40












$begingroup$
Does the denominator need to add up to n in the first case?
$endgroup$
– Sebastian
Apr 2 at 2:13




$begingroup$
Does the denominator need to add up to n in the first case?
$endgroup$
– Sebastian
Apr 2 at 2:13












$begingroup$
Yes, you need $sum_i=1^r n_i = n$ since the sizes of the blocks must add up to the size of the set
$endgroup$
– Jair Taylor
Apr 2 at 2:41




$begingroup$
Yes, you need $sum_i=1^r n_i = n$ since the sizes of the blocks must add up to the size of the set
$endgroup$
– Jair Taylor
Apr 2 at 2:41










1 Answer
1






active

oldest

votes


















2












$begingroup$

This is not correct. If all the groups are different sizes, then the answer is $fracn!n_1!n_2!dots n_r!$ regardless whether you care about the order of the groups. It cannot be the case that you divide by $r!$, since for example when $n=3,n_1=1,n_2=2$, then $frac3!1!2!=3$ is not divisible by $2!$.



If all groups are the same size, the you do need to add $r!$ to the denominator to discount for order, so the formula is $fracn!r!(n/r)!^r$.



In general, suppose the numbers $n_i$ are partitioned into several groups, where the $k^th$ group has size $lambda_k$, and the $n_i=n_j$ if and only if $n_i$ and $n_j$ are in the same group. Then the number of ways to partition the objects into groups of size $n_1,dots,n_r$ without respect to order is
$$
fracn!left(prod_i=1^r n_i!right)left(prod_k=1^m lambda_j!right).
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Of course, you are right.
    $endgroup$
    – Jair Taylor
    Apr 2 at 5:16











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171336%2fwhats-the-formula-for-partitions-where-each-group-has-a-different-size%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

This is not correct. If all the groups are different sizes, then the answer is $fracn!n_1!n_2!dots n_r!$ regardless whether you care about the order of the groups. It cannot be the case that you divide by $r!$, since for example when $n=3,n_1=1,n_2=2$, then $frac3!1!2!=3$ is not divisible by $2!$.



If all groups are the same size, the you do need to add $r!$ to the denominator to discount for order, so the formula is $fracn!r!(n/r)!^r$.



In general, suppose the numbers $n_i$ are partitioned into several groups, where the $k^th$ group has size $lambda_k$, and the $n_i=n_j$ if and only if $n_i$ and $n_j$ are in the same group. Then the number of ways to partition the objects into groups of size $n_1,dots,n_r$ without respect to order is
$$
fracn!left(prod_i=1^r n_i!right)left(prod_k=1^m lambda_j!right).
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Of course, you are right.
    $endgroup$
    – Jair Taylor
    Apr 2 at 5:16















2












$begingroup$

This is not correct. If all the groups are different sizes, then the answer is $fracn!n_1!n_2!dots n_r!$ regardless whether you care about the order of the groups. It cannot be the case that you divide by $r!$, since for example when $n=3,n_1=1,n_2=2$, then $frac3!1!2!=3$ is not divisible by $2!$.



If all groups are the same size, the you do need to add $r!$ to the denominator to discount for order, so the formula is $fracn!r!(n/r)!^r$.



In general, suppose the numbers $n_i$ are partitioned into several groups, where the $k^th$ group has size $lambda_k$, and the $n_i=n_j$ if and only if $n_i$ and $n_j$ are in the same group. Then the number of ways to partition the objects into groups of size $n_1,dots,n_r$ without respect to order is
$$
fracn!left(prod_i=1^r n_i!right)left(prod_k=1^m lambda_j!right).
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Of course, you are right.
    $endgroup$
    – Jair Taylor
    Apr 2 at 5:16













2












2








2





$begingroup$

This is not correct. If all the groups are different sizes, then the answer is $fracn!n_1!n_2!dots n_r!$ regardless whether you care about the order of the groups. It cannot be the case that you divide by $r!$, since for example when $n=3,n_1=1,n_2=2$, then $frac3!1!2!=3$ is not divisible by $2!$.



If all groups are the same size, the you do need to add $r!$ to the denominator to discount for order, so the formula is $fracn!r!(n/r)!^r$.



In general, suppose the numbers $n_i$ are partitioned into several groups, where the $k^th$ group has size $lambda_k$, and the $n_i=n_j$ if and only if $n_i$ and $n_j$ are in the same group. Then the number of ways to partition the objects into groups of size $n_1,dots,n_r$ without respect to order is
$$
fracn!left(prod_i=1^r n_i!right)left(prod_k=1^m lambda_j!right).
$$






share|cite|improve this answer











$endgroup$



This is not correct. If all the groups are different sizes, then the answer is $fracn!n_1!n_2!dots n_r!$ regardless whether you care about the order of the groups. It cannot be the case that you divide by $r!$, since for example when $n=3,n_1=1,n_2=2$, then $frac3!1!2!=3$ is not divisible by $2!$.



If all groups are the same size, the you do need to add $r!$ to the denominator to discount for order, so the formula is $fracn!r!(n/r)!^r$.



In general, suppose the numbers $n_i$ are partitioned into several groups, where the $k^th$ group has size $lambda_k$, and the $n_i=n_j$ if and only if $n_i$ and $n_j$ are in the same group. Then the number of ways to partition the objects into groups of size $n_1,dots,n_r$ without respect to order is
$$
fracn!left(prod_i=1^r n_i!right)left(prod_k=1^m lambda_j!right).
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 2 at 14:17

























answered Apr 2 at 4:02









Mike EarnestMike Earnest

28.2k22152




28.2k22152











  • $begingroup$
    Of course, you are right.
    $endgroup$
    – Jair Taylor
    Apr 2 at 5:16
















  • $begingroup$
    Of course, you are right.
    $endgroup$
    – Jair Taylor
    Apr 2 at 5:16















$begingroup$
Of course, you are right.
$endgroup$
– Jair Taylor
Apr 2 at 5:16




$begingroup$
Of course, you are right.
$endgroup$
– Jair Taylor
Apr 2 at 5:16

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171336%2fwhats-the-formula-for-partitions-where-each-group-has-a-different-size%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu