Is there a way to extract a primary decomposition of $(0)subset R/I$ given a decomposition of $Isubset R$? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric meaning of primary decompositionExplanation of passage in Atiyah-MacDonaldpractical condition for minimality in primary decompositionAlgorithm for primary decomposition of ideals in a power series ring over a fieldAbout second uniqueness primary decomposition theoremWhy is $(x,y)cap(x,z)cap(x,y,z)^2$ a minimal primary decomposition of $(x,y)(x,z)$?Primary decomposition of ideal saturationFinding the minimal primary decomposition of a monomial idealLocal cohomology and primary decomposition

What is the meaning of 'breadth' in breadth first search?

The Nth Gryphon Number

How do I find out the mythology and history of my Fortress?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

Deconstruction is ambiguous

What does 丫 mean? 丫是什么意思?

What to do with repeated rejections for phd position

An adverb for when you're not exaggerating

Semigroups with no morphisms between them

Does the Mueller report show a conspiracy between Russia and the Trump Campaign?

What's the point of the test set?

Why can't I install Tomboy in Ubuntu Mate 19.04?

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Lagrange four-squares theorem --- deterministic complexity

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

macOS: Name for app shortcut screen found by pinching with thumb and three fingers

Why weren't discrete x86 CPUs ever used in game hardware?

Is there any word for a place full of confusion?

How to report t statistic from R

What does it mean that physics no longer uses mechanical models to describe phenomena?

How to write capital alpha?

Most bit efficient text communication method?

What initially awakened the Balrog?



Is there a way to extract a primary decomposition of $(0)subset R/I$ given a decomposition of $Isubset R$?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric meaning of primary decompositionExplanation of passage in Atiyah-MacDonaldpractical condition for minimality in primary decompositionAlgorithm for primary decomposition of ideals in a power series ring over a fieldAbout second uniqueness primary decomposition theoremWhy is $(x,y)cap(x,z)cap(x,y,z)^2$ a minimal primary decomposition of $(x,y)(x,z)$?Primary decomposition of ideal saturationFinding the minimal primary decomposition of a monomial idealLocal cohomology and primary decomposition










0












$begingroup$


Suppose we have a (minimal) primary decomposition of an ideal $I$ in a polynomial ring $R$ over a field; for simplicity assume $I=I_1cap I_2$ where $I_j$ is $P_j$-primary. Is there a way to extract from this a primary decomposition of $(0)$ in $R/I$? If so, say $(0)=J_1capdotscap J_k$ where $J_i$ is $Q_i$-primary.



Can I just take the equality $I=I_1cap I_2$ and replace all generators by their residues mod $I$? If so, how to justify this? How are $Q_i$ and $P_j$ related?










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    Suppose we have a (minimal) primary decomposition of an ideal $I$ in a polynomial ring $R$ over a field; for simplicity assume $I=I_1cap I_2$ where $I_j$ is $P_j$-primary. Is there a way to extract from this a primary decomposition of $(0)$ in $R/I$? If so, say $(0)=J_1capdotscap J_k$ where $J_i$ is $Q_i$-primary.



    Can I just take the equality $I=I_1cap I_2$ and replace all generators by their residues mod $I$? If so, how to justify this? How are $Q_i$ and $P_j$ related?










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      Suppose we have a (minimal) primary decomposition of an ideal $I$ in a polynomial ring $R$ over a field; for simplicity assume $I=I_1cap I_2$ where $I_j$ is $P_j$-primary. Is there a way to extract from this a primary decomposition of $(0)$ in $R/I$? If so, say $(0)=J_1capdotscap J_k$ where $J_i$ is $Q_i$-primary.



      Can I just take the equality $I=I_1cap I_2$ and replace all generators by their residues mod $I$? If so, how to justify this? How are $Q_i$ and $P_j$ related?










      share|cite|improve this question









      $endgroup$




      Suppose we have a (minimal) primary decomposition of an ideal $I$ in a polynomial ring $R$ over a field; for simplicity assume $I=I_1cap I_2$ where $I_j$ is $P_j$-primary. Is there a way to extract from this a primary decomposition of $(0)$ in $R/I$? If so, say $(0)=J_1capdotscap J_k$ where $J_i$ is $Q_i$-primary.



      Can I just take the equality $I=I_1cap I_2$ and replace all generators by their residues mod $I$? If so, how to justify this? How are $Q_i$ and $P_j$ related?







      abstract-algebra algebraic-geometry commutative-algebra ideals primary-decomposition






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 2 at 2:41









      user437309user437309

      787414




      787414




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Here are three results that together solve your problem:



          1. For $Isubset R$ an ideal, there's a bijective correspondence between ideals of $R$ containing $I$ and ideals in $R/I$, given by sending $Jsupset I mapsto J/I$. (Correspondence theorem)


          2. If $Isubset J$ are ideals in $R$, then $(R/I)/(I/J)cong R/J$, and the maps are the obvious maps. (Third isomorphism theorem)


          3. An ideal $Isubset R$ is primary iff the only zero divisors of $R/I$ are nilpotent. (Definition of primary ideal)


          So the images of the ideals $I_1$ and $I_2$ in $R/I$ are still primary, since $R/I_i cong (R/I)/(I_i/I)$ and thus the condition on zero divisors being nilpotent is still satisfied. Further, any primary decomposition of $(0)subset R/I$ gives rise bijectively to a primary decomposition of $Isubset R$ and vice-versa via 1. In short, your final line about "[replacing] all generators by their residue mod $I$" is correct.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
            $endgroup$
            – user437309
            Apr 2 at 23:48











          • $begingroup$
            Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
            $endgroup$
            – KReiser
            Apr 3 at 0:37










          • $begingroup$
            But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
            $endgroup$
            – user437309
            Apr 3 at 0:46











          • $begingroup$
            In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
            $endgroup$
            – KReiser
            Apr 3 at 2:25











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171395%2fis-there-a-way-to-extract-a-primary-decomposition-of-0-subset-r-i-given-a-de%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Here are three results that together solve your problem:



          1. For $Isubset R$ an ideal, there's a bijective correspondence between ideals of $R$ containing $I$ and ideals in $R/I$, given by sending $Jsupset I mapsto J/I$. (Correspondence theorem)


          2. If $Isubset J$ are ideals in $R$, then $(R/I)/(I/J)cong R/J$, and the maps are the obvious maps. (Third isomorphism theorem)


          3. An ideal $Isubset R$ is primary iff the only zero divisors of $R/I$ are nilpotent. (Definition of primary ideal)


          So the images of the ideals $I_1$ and $I_2$ in $R/I$ are still primary, since $R/I_i cong (R/I)/(I_i/I)$ and thus the condition on zero divisors being nilpotent is still satisfied. Further, any primary decomposition of $(0)subset R/I$ gives rise bijectively to a primary decomposition of $Isubset R$ and vice-versa via 1. In short, your final line about "[replacing] all generators by their residue mod $I$" is correct.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
            $endgroup$
            – user437309
            Apr 2 at 23:48











          • $begingroup$
            Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
            $endgroup$
            – KReiser
            Apr 3 at 0:37










          • $begingroup$
            But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
            $endgroup$
            – user437309
            Apr 3 at 0:46











          • $begingroup$
            In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
            $endgroup$
            – KReiser
            Apr 3 at 2:25















          1












          $begingroup$

          Here are three results that together solve your problem:



          1. For $Isubset R$ an ideal, there's a bijective correspondence between ideals of $R$ containing $I$ and ideals in $R/I$, given by sending $Jsupset I mapsto J/I$. (Correspondence theorem)


          2. If $Isubset J$ are ideals in $R$, then $(R/I)/(I/J)cong R/J$, and the maps are the obvious maps. (Third isomorphism theorem)


          3. An ideal $Isubset R$ is primary iff the only zero divisors of $R/I$ are nilpotent. (Definition of primary ideal)


          So the images of the ideals $I_1$ and $I_2$ in $R/I$ are still primary, since $R/I_i cong (R/I)/(I_i/I)$ and thus the condition on zero divisors being nilpotent is still satisfied. Further, any primary decomposition of $(0)subset R/I$ gives rise bijectively to a primary decomposition of $Isubset R$ and vice-versa via 1. In short, your final line about "[replacing] all generators by their residue mod $I$" is correct.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
            $endgroup$
            – user437309
            Apr 2 at 23:48











          • $begingroup$
            Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
            $endgroup$
            – KReiser
            Apr 3 at 0:37










          • $begingroup$
            But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
            $endgroup$
            – user437309
            Apr 3 at 0:46











          • $begingroup$
            In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
            $endgroup$
            – KReiser
            Apr 3 at 2:25













          1












          1








          1





          $begingroup$

          Here are three results that together solve your problem:



          1. For $Isubset R$ an ideal, there's a bijective correspondence between ideals of $R$ containing $I$ and ideals in $R/I$, given by sending $Jsupset I mapsto J/I$. (Correspondence theorem)


          2. If $Isubset J$ are ideals in $R$, then $(R/I)/(I/J)cong R/J$, and the maps are the obvious maps. (Third isomorphism theorem)


          3. An ideal $Isubset R$ is primary iff the only zero divisors of $R/I$ are nilpotent. (Definition of primary ideal)


          So the images of the ideals $I_1$ and $I_2$ in $R/I$ are still primary, since $R/I_i cong (R/I)/(I_i/I)$ and thus the condition on zero divisors being nilpotent is still satisfied. Further, any primary decomposition of $(0)subset R/I$ gives rise bijectively to a primary decomposition of $Isubset R$ and vice-versa via 1. In short, your final line about "[replacing] all generators by their residue mod $I$" is correct.






          share|cite|improve this answer









          $endgroup$



          Here are three results that together solve your problem:



          1. For $Isubset R$ an ideal, there's a bijective correspondence between ideals of $R$ containing $I$ and ideals in $R/I$, given by sending $Jsupset I mapsto J/I$. (Correspondence theorem)


          2. If $Isubset J$ are ideals in $R$, then $(R/I)/(I/J)cong R/J$, and the maps are the obvious maps. (Third isomorphism theorem)


          3. An ideal $Isubset R$ is primary iff the only zero divisors of $R/I$ are nilpotent. (Definition of primary ideal)


          So the images of the ideals $I_1$ and $I_2$ in $R/I$ are still primary, since $R/I_i cong (R/I)/(I_i/I)$ and thus the condition on zero divisors being nilpotent is still satisfied. Further, any primary decomposition of $(0)subset R/I$ gives rise bijectively to a primary decomposition of $Isubset R$ and vice-versa via 1. In short, your final line about "[replacing] all generators by their residue mod $I$" is correct.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 2 at 4:36









          KReiserKReiser

          10.2k21435




          10.2k21435











          • $begingroup$
            So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
            $endgroup$
            – user437309
            Apr 2 at 23:48











          • $begingroup$
            Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
            $endgroup$
            – KReiser
            Apr 3 at 0:37










          • $begingroup$
            But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
            $endgroup$
            – user437309
            Apr 3 at 0:46











          • $begingroup$
            In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
            $endgroup$
            – KReiser
            Apr 3 at 2:25
















          • $begingroup$
            So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
            $endgroup$
            – user437309
            Apr 2 at 23:48











          • $begingroup$
            Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
            $endgroup$
            – KReiser
            Apr 3 at 0:37










          • $begingroup$
            But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
            $endgroup$
            – user437309
            Apr 3 at 0:46











          • $begingroup$
            In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
            $endgroup$
            – KReiser
            Apr 3 at 2:25















          $begingroup$
          So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
          $endgroup$
          – user437309
          Apr 2 at 23:48





          $begingroup$
          So in particular, my terminology, $P_k=Q_k$ for $k=1,2$ by the third isomorphism theorem? (And $J_k=I_k/I$)
          $endgroup$
          – user437309
          Apr 2 at 23:48













          $begingroup$
          Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
          $endgroup$
          – KReiser
          Apr 3 at 0:37




          $begingroup$
          Assuming I've read your post right (it's a little tough in places), $P_k$ cannot equal $Q_k$ since they're ideals of different rings.
          $endgroup$
          – KReiser
          Apr 3 at 0:37












          $begingroup$
          But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
          $endgroup$
          – user437309
          Apr 3 at 0:46





          $begingroup$
          But in both cases we are dealing with primary decompositions of $R$-modules (in the first case the module is $Isubset R$, in the second case it's $0subset R/I$). Shouldn't the components of either decomposition be $P$-primary ideals for some prime ideal $Psubset R$? I thought such $P$s live in one and the same ring $R$.
          $endgroup$
          – user437309
          Apr 3 at 0:46













          $begingroup$
          In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
          $endgroup$
          – KReiser
          Apr 3 at 2:25




          $begingroup$
          In my experience, it is typical that when one writes about primary decompositions of ideals in rings, one means the primary decomposition of that ideal in that ring. If you mean something else, you should say that specifically.
          $endgroup$
          – KReiser
          Apr 3 at 2:25

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171395%2fis-there-a-way-to-extract-a-primary-decomposition-of-0-subset-r-i-given-a-de%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919