Injective mapping theorem proof discrepancy. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Prove or disprove: the Hilbert-Schmidt norm is independent of the choice of basis on $mathbbR^n$Inverse function theorem proof queryMultivariate mean value theorem in statistics contextA difficulty in understanding the proof of completeness of $l_2$.A difficulty in understanding theorem 4.2 in Israel Gohberg.Second difficulty in understanding the proof of theorem 1.14 in Hungerford.Need a help in understanding a solution of a forth problem in Israel Gohberg.A difficulty in obtaining a formula in the proof of a theorem.A difficulty in understanding a proof for L'Hospital's rule (in Petrovic)A difficulty in understanding a step in the proof of Thm. 11.5.6 in Petrovic.A difficulty in understanding multivariable Fermat theorem proof.

How were pictures turned from film to a big picture in a picture frame before digital scanning?

Most bit efficient text communication method?

One-one communication

Strange behavior of Object.defineProperty() in JavaScript

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Misunderstanding of Sylow theory

Maximum summed subsequences with non-adjacent items

Do I really need to have a message in a novel to appeal to readers?

What to do with repeated rejections for phd position

How does the math work when buying airline miles?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

Random body shuffle every night—can we still function?

What are the discoveries that have been possible with the rejection of positivism?

How do living politicians protect their readily obtainable signatures from misuse?

Does the Mueller report show a conspiracy between Russia and the Trump Campaign?

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

What does 丫 mean? 丫是什么意思?

How could we fake a moon landing now?

Is there public access to the Meteor Crater in Arizona?

Co-worker has annoying ringtone

Crossing US/Canada Border for less than 24 hours

Is there any word for a place full of confusion?

Do wooden building fires get hotter than 600°C?

What does it mean that physics no longer uses mechanical models to describe phenomena?



Injective mapping theorem proof discrepancy.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Prove or disprove: the Hilbert-Schmidt norm is independent of the choice of basis on $mathbbR^n$Inverse function theorem proof queryMultivariate mean value theorem in statistics contextA difficulty in understanding the proof of completeness of $l_2$.A difficulty in understanding theorem 4.2 in Israel Gohberg.Second difficulty in understanding the proof of theorem 1.14 in Hungerford.Need a help in understanding a solution of a forth problem in Israel Gohberg.A difficulty in obtaining a formula in the proof of a theorem.A difficulty in understanding a proof for L'Hospital's rule (in Petrovic)A difficulty in understanding a step in the proof of Thm. 11.5.6 in Petrovic.A difficulty in understanding multivariable Fermat theorem proof.










2












$begingroup$


I do not understand from where the 2 comes in the proof of letter(a) of the statement of the theorem:



enter image description here



And this is proposition 12.2.4



enter image description here



I think the author has used the mean value inequality, but I do not know how, could anyone explain this for me please?










share|cite|improve this question









$endgroup$











  • $begingroup$
    My answer should clear some of this up for you. The lemma I refer to is a bit involved but I can give you a reference.
    $endgroup$
    – RRL
    Apr 2 at 3:11










  • $begingroup$
    Thank you I know this lemma @RRL
    $endgroup$
    – hopefully
    Apr 2 at 3:13










  • $begingroup$
    That is impressive.
    $endgroup$
    – RRL
    Apr 2 at 3:13










  • $begingroup$
    @RRL I am sorry .... but it is just mentioned before the theorem ..... it seems like my concentration is weak today.
    $endgroup$
    – hopefully
    Apr 2 at 3:15











  • $begingroup$
    Yes -- it should use the mean value inequality $|f(u) - f(v)| leqslant |Df(c)(u-v)|$ for some $c$ on the segment joining $u$ and $v$.
    $endgroup$
    – RRL
    Apr 2 at 3:17
















2












$begingroup$


I do not understand from where the 2 comes in the proof of letter(a) of the statement of the theorem:



enter image description here



And this is proposition 12.2.4



enter image description here



I think the author has used the mean value inequality, but I do not know how, could anyone explain this for me please?










share|cite|improve this question









$endgroup$











  • $begingroup$
    My answer should clear some of this up for you. The lemma I refer to is a bit involved but I can give you a reference.
    $endgroup$
    – RRL
    Apr 2 at 3:11










  • $begingroup$
    Thank you I know this lemma @RRL
    $endgroup$
    – hopefully
    Apr 2 at 3:13










  • $begingroup$
    That is impressive.
    $endgroup$
    – RRL
    Apr 2 at 3:13










  • $begingroup$
    @RRL I am sorry .... but it is just mentioned before the theorem ..... it seems like my concentration is weak today.
    $endgroup$
    – hopefully
    Apr 2 at 3:15











  • $begingroup$
    Yes -- it should use the mean value inequality $|f(u) - f(v)| leqslant |Df(c)(u-v)|$ for some $c$ on the segment joining $u$ and $v$.
    $endgroup$
    – RRL
    Apr 2 at 3:17














2












2








2





$begingroup$


I do not understand from where the 2 comes in the proof of letter(a) of the statement of the theorem:



enter image description here



And this is proposition 12.2.4



enter image description here



I think the author has used the mean value inequality, but I do not know how, could anyone explain this for me please?










share|cite|improve this question









$endgroup$




I do not understand from where the 2 comes in the proof of letter(a) of the statement of the theorem:



enter image description here



And this is proposition 12.2.4



enter image description here



I think the author has used the mean value inequality, but I do not know how, could anyone explain this for me please?







real-analysis calculus analysis multivariable-calculus proof-explanation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 2 at 1:15









hopefullyhopefully

192215




192215











  • $begingroup$
    My answer should clear some of this up for you. The lemma I refer to is a bit involved but I can give you a reference.
    $endgroup$
    – RRL
    Apr 2 at 3:11










  • $begingroup$
    Thank you I know this lemma @RRL
    $endgroup$
    – hopefully
    Apr 2 at 3:13










  • $begingroup$
    That is impressive.
    $endgroup$
    – RRL
    Apr 2 at 3:13










  • $begingroup$
    @RRL I am sorry .... but it is just mentioned before the theorem ..... it seems like my concentration is weak today.
    $endgroup$
    – hopefully
    Apr 2 at 3:15











  • $begingroup$
    Yes -- it should use the mean value inequality $|f(u) - f(v)| leqslant |Df(c)(u-v)|$ for some $c$ on the segment joining $u$ and $v$.
    $endgroup$
    – RRL
    Apr 2 at 3:17

















  • $begingroup$
    My answer should clear some of this up for you. The lemma I refer to is a bit involved but I can give you a reference.
    $endgroup$
    – RRL
    Apr 2 at 3:11










  • $begingroup$
    Thank you I know this lemma @RRL
    $endgroup$
    – hopefully
    Apr 2 at 3:13










  • $begingroup$
    That is impressive.
    $endgroup$
    – RRL
    Apr 2 at 3:13










  • $begingroup$
    @RRL I am sorry .... but it is just mentioned before the theorem ..... it seems like my concentration is weak today.
    $endgroup$
    – hopefully
    Apr 2 at 3:15











  • $begingroup$
    Yes -- it should use the mean value inequality $|f(u) - f(v)| leqslant |Df(c)(u-v)|$ for some $c$ on the segment joining $u$ and $v$.
    $endgroup$
    – RRL
    Apr 2 at 3:17
















$begingroup$
My answer should clear some of this up for you. The lemma I refer to is a bit involved but I can give you a reference.
$endgroup$
– RRL
Apr 2 at 3:11




$begingroup$
My answer should clear some of this up for you. The lemma I refer to is a bit involved but I can give you a reference.
$endgroup$
– RRL
Apr 2 at 3:11












$begingroup$
Thank you I know this lemma @RRL
$endgroup$
– hopefully
Apr 2 at 3:13




$begingroup$
Thank you I know this lemma @RRL
$endgroup$
– hopefully
Apr 2 at 3:13












$begingroup$
That is impressive.
$endgroup$
– RRL
Apr 2 at 3:13




$begingroup$
That is impressive.
$endgroup$
– RRL
Apr 2 at 3:13












$begingroup$
@RRL I am sorry .... but it is just mentioned before the theorem ..... it seems like my concentration is weak today.
$endgroup$
– hopefully
Apr 2 at 3:15





$begingroup$
@RRL I am sorry .... but it is just mentioned before the theorem ..... it seems like my concentration is weak today.
$endgroup$
– hopefully
Apr 2 at 3:15













$begingroup$
Yes -- it should use the mean value inequality $|f(u) - f(v)| leqslant |Df(c)(u-v)|$ for some $c$ on the segment joining $u$ and $v$.
$endgroup$
– RRL
Apr 2 at 3:17





$begingroup$
Yes -- it should use the mean value inequality $|f(u) - f(v)| leqslant |Df(c)(u-v)|$ for some $c$ on the segment joining $u$ and $v$.
$endgroup$
– RRL
Apr 2 at 3:17











1 Answer
1






active

oldest

votes


















2












$begingroup$

From Proposition 12.2.4, since $Df(c)$ is injective the exists a constant $gamma'$ such that $|Df(c)(u)| geqslant gamma'|u|$. This is easily proved by using the fact that a linear operator is continuous and attains a maximum and minimum on the (compact) unit sphere.



We can define $gamma = frac12gamma'$ so that $|Df(c)(u)| geqslant gamma'|u| geqslant 2gamma|u|$.



There is a lemma that states if $f$ is continuously differentiable, then given $gamma > 0$, for all points $u$ and $v$ sufficiently close to $c$, i.e. in the ball $B$ centered at $c$, we have



$$|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v|$$



The proof does, in fact, use the mean value theorem.



By the reverse triangle inequality,



$$|Df(c)(u-v)| - |f(u) - f(v)|leqslant|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v| $$



Hence,



$$|f(u) - f(v)| geqslant |Df(c)(u-v)| - gamma |u-v| geqslant 2gamma|u-v| - gamma |u-v| = gamma |u-v|$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
    $endgroup$
    – hopefully
    Apr 2 at 3:11











  • $begingroup$
    @hopefully: Ok I'll take a look shortly.
    $endgroup$
    – RRL
    Apr 2 at 3:19










  • $begingroup$
    Thank you so much :) I appreciate it
    $endgroup$
    – hopefully
    Apr 2 at 3:26











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171342%2finjective-mapping-theorem-proof-discrepancy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

From Proposition 12.2.4, since $Df(c)$ is injective the exists a constant $gamma'$ such that $|Df(c)(u)| geqslant gamma'|u|$. This is easily proved by using the fact that a linear operator is continuous and attains a maximum and minimum on the (compact) unit sphere.



We can define $gamma = frac12gamma'$ so that $|Df(c)(u)| geqslant gamma'|u| geqslant 2gamma|u|$.



There is a lemma that states if $f$ is continuously differentiable, then given $gamma > 0$, for all points $u$ and $v$ sufficiently close to $c$, i.e. in the ball $B$ centered at $c$, we have



$$|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v|$$



The proof does, in fact, use the mean value theorem.



By the reverse triangle inequality,



$$|Df(c)(u-v)| - |f(u) - f(v)|leqslant|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v| $$



Hence,



$$|f(u) - f(v)| geqslant |Df(c)(u-v)| - gamma |u-v| geqslant 2gamma|u-v| - gamma |u-v| = gamma |u-v|$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
    $endgroup$
    – hopefully
    Apr 2 at 3:11











  • $begingroup$
    @hopefully: Ok I'll take a look shortly.
    $endgroup$
    – RRL
    Apr 2 at 3:19










  • $begingroup$
    Thank you so much :) I appreciate it
    $endgroup$
    – hopefully
    Apr 2 at 3:26















2












$begingroup$

From Proposition 12.2.4, since $Df(c)$ is injective the exists a constant $gamma'$ such that $|Df(c)(u)| geqslant gamma'|u|$. This is easily proved by using the fact that a linear operator is continuous and attains a maximum and minimum on the (compact) unit sphere.



We can define $gamma = frac12gamma'$ so that $|Df(c)(u)| geqslant gamma'|u| geqslant 2gamma|u|$.



There is a lemma that states if $f$ is continuously differentiable, then given $gamma > 0$, for all points $u$ and $v$ sufficiently close to $c$, i.e. in the ball $B$ centered at $c$, we have



$$|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v|$$



The proof does, in fact, use the mean value theorem.



By the reverse triangle inequality,



$$|Df(c)(u-v)| - |f(u) - f(v)|leqslant|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v| $$



Hence,



$$|f(u) - f(v)| geqslant |Df(c)(u-v)| - gamma |u-v| geqslant 2gamma|u-v| - gamma |u-v| = gamma |u-v|$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
    $endgroup$
    – hopefully
    Apr 2 at 3:11











  • $begingroup$
    @hopefully: Ok I'll take a look shortly.
    $endgroup$
    – RRL
    Apr 2 at 3:19










  • $begingroup$
    Thank you so much :) I appreciate it
    $endgroup$
    – hopefully
    Apr 2 at 3:26













2












2








2





$begingroup$

From Proposition 12.2.4, since $Df(c)$ is injective the exists a constant $gamma'$ such that $|Df(c)(u)| geqslant gamma'|u|$. This is easily proved by using the fact that a linear operator is continuous and attains a maximum and minimum on the (compact) unit sphere.



We can define $gamma = frac12gamma'$ so that $|Df(c)(u)| geqslant gamma'|u| geqslant 2gamma|u|$.



There is a lemma that states if $f$ is continuously differentiable, then given $gamma > 0$, for all points $u$ and $v$ sufficiently close to $c$, i.e. in the ball $B$ centered at $c$, we have



$$|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v|$$



The proof does, in fact, use the mean value theorem.



By the reverse triangle inequality,



$$|Df(c)(u-v)| - |f(u) - f(v)|leqslant|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v| $$



Hence,



$$|f(u) - f(v)| geqslant |Df(c)(u-v)| - gamma |u-v| geqslant 2gamma|u-v| - gamma |u-v| = gamma |u-v|$$






share|cite|improve this answer









$endgroup$



From Proposition 12.2.4, since $Df(c)$ is injective the exists a constant $gamma'$ such that $|Df(c)(u)| geqslant gamma'|u|$. This is easily proved by using the fact that a linear operator is continuous and attains a maximum and minimum on the (compact) unit sphere.



We can define $gamma = frac12gamma'$ so that $|Df(c)(u)| geqslant gamma'|u| geqslant 2gamma|u|$.



There is a lemma that states if $f$ is continuously differentiable, then given $gamma > 0$, for all points $u$ and $v$ sufficiently close to $c$, i.e. in the ball $B$ centered at $c$, we have



$$|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v|$$



The proof does, in fact, use the mean value theorem.



By the reverse triangle inequality,



$$|Df(c)(u-v)| - |f(u) - f(v)|leqslant|f(u) - f(v) - Df(c)(u-v)| leqslant gamma |u-v| $$



Hence,



$$|f(u) - f(v)| geqslant |Df(c)(u-v)| - gamma |u-v| geqslant 2gamma|u-v| - gamma |u-v| = gamma |u-v|$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 2 at 3:09









RRLRRL

53.8k52675




53.8k52675











  • $begingroup$
    math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
    $endgroup$
    – hopefully
    Apr 2 at 3:11











  • $begingroup$
    @hopefully: Ok I'll take a look shortly.
    $endgroup$
    – RRL
    Apr 2 at 3:19










  • $begingroup$
    Thank you so much :) I appreciate it
    $endgroup$
    – hopefully
    Apr 2 at 3:26
















  • $begingroup$
    math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
    $endgroup$
    – hopefully
    Apr 2 at 3:11











  • $begingroup$
    @hopefully: Ok I'll take a look shortly.
    $endgroup$
    – RRL
    Apr 2 at 3:19










  • $begingroup$
    Thank you so much :) I appreciate it
    $endgroup$
    – hopefully
    Apr 2 at 3:26















$begingroup$
math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
$endgroup$
– hopefully
Apr 2 at 3:11





$begingroup$
math.stackexchange.com/questions/3170545/… could you please look at this question for me if you have time?
$endgroup$
– hopefully
Apr 2 at 3:11













$begingroup$
@hopefully: Ok I'll take a look shortly.
$endgroup$
– RRL
Apr 2 at 3:19




$begingroup$
@hopefully: Ok I'll take a look shortly.
$endgroup$
– RRL
Apr 2 at 3:19












$begingroup$
Thank you so much :) I appreciate it
$endgroup$
– hopefully
Apr 2 at 3:26




$begingroup$
Thank you so much :) I appreciate it
$endgroup$
– hopefully
Apr 2 at 3:26

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171342%2finjective-mapping-theorem-proof-discrepancy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu