Are the 1-parameters subgroups of $SO(3)$ closed? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)$1$-parameter subgroups in $GL_n(mathbbC)$When does the $mathfrak g$-invariance of the symplectic form imply $G$-invariance?Non-solvable, closed subgroups of $mathrmPSL(2,mathbbR)$homomorphism between smooth algebraic groups of the same dimensionIs the subgroup of homotopically trivial isometries a closed subgroup of the isometry group?One-dimensional closed subgroups of $SO(3)$Are degree > 1 maps surjective on codimension 0 submanifoldsHomomorphisms of matrix Lie groupsAbstract Proof that Exponential Map is Surjective onto $mathrmGL_n(mathbbC)$Are matrix exponentials the only continuous homomorphisms $mathbb R_+tomathcal M_n(mathbb R)$?

Strange behavior of Object.defineProperty() in JavaScript

The test team as an enemy of development? And how can this be avoided?

How did Fremen produce and carry enough thumpers to use Sandworms as de facto Ubers?

How to write capital alpha?

Is there hard evidence that the grant peer review system performs significantly better than random?

What is an "asse" in Elizabethan English?

What are the discoveries that have been possible with the rejection of positivism?

Does the Mueller report show a conspiracy between Russia and the Trump Campaign?

How to report t statistic from R

How would a mousetrap for use in space work?

What does it mean that physics no longer uses mechanical models to describe phenomena?

How do living politicians protect their readily obtainable signatures from misuse?

How do I find out the mythology and history of my Fortress?

How often does castling occur in grandmaster games?

Why weren't discrete x86 CPUs ever used in game hardware?

How could we fake a moon landing now?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

As Singapore Airlines (Krisflyer) Gold, can I bring my family into the lounge on a domestic Virgin Australia flight?

1-probability to calculate two events in a row

Misunderstanding of Sylow theory

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

How many time has Arya actually used Needle?



Are the 1-parameters subgroups of $SO(3)$ closed?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)$1$-parameter subgroups in $GL_n(mathbbC)$When does the $mathfrak g$-invariance of the symplectic form imply $G$-invariance?Non-solvable, closed subgroups of $mathrmPSL(2,mathbbR)$homomorphism between smooth algebraic groups of the same dimensionIs the subgroup of homotopically trivial isometries a closed subgroup of the isometry group?One-dimensional closed subgroups of $SO(3)$Are degree > 1 maps surjective on codimension 0 submanifoldsHomomorphisms of matrix Lie groupsAbstract Proof that Exponential Map is Surjective onto $mathrmGL_n(mathbbC)$Are matrix exponentials the only continuous homomorphisms $mathbb R_+tomathcal M_n(mathbb R)$?










2












$begingroup$


I'm trying to solve the following question




Question: Prove that all $1$-parameters subgroup of $SO(3)$ are closed. Does this statement holds for $SO(n),$ $n>3$?





Some comments



The $1$-parameters subgroups of $SO(n)$ are the groups



$$P_A := e^tA; A in M_n(mathbbR) textand A+A^T = 0. $$



Since $SO(n)$ is compact the exponential map is surjective, and the map $mathbbRto P_A (tmapsto e^tA)$ is an isomorphism of groups (it is easy to see that $0$ is the unique element of the kernel, sinse $e^B = textId$ $Leftrightarrow B =0$)
homomorphism of groups.



Being honest I can't believe that $P_A$ is closed when $n=3$, the fact of $P_A cong mathbbR$ as a group makes me have no idea of what is going on, once $P_A$ closed would imply $P_A$ compact.



EDIT: After Reuns' help I realised that I wroted thing that does not make any sense.




Can anyone help me?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are you sure that $mathbb R rightarrow P_A$ is an isomorphism? What would make more sense to me is to have $P_A cong mathbb R/mathbb Z$, since closed subsets of compacts are compact as you said.
    $endgroup$
    – D_S
    Apr 2 at 1:50










  • $begingroup$
    @D_S I do think so, because $e^tA=textId$, implies $tA=0$, have I made a mistake?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:01











  • $begingroup$
    I'd say $P_A cong lambda m + BbbZ^n, m in BbbZ subset BbbR^n/ Z^n$ where $2ipi lambda_j$ are the eigenvalues of $A$, and $P_A cong BbbR/Z$ iff the ratios between those eigenvalues are rational. Otherwise $P_A cong BbbR$ and it isn't closed. $e^tA=textId$ implies $QfractA2ipiQ^-1$ is diagonal with integer entries for some $Q$.
    $endgroup$
    – reuns
    Apr 2 at 2:14











  • $begingroup$
    @reuns But if all entries of $A$ and $Q$ are real numbers, then $fract2pi i Q A Q^-1$ is an imaginary matrix. If $A$ is a real matrix then $e^A = I Rightarrow A=0$, isn't it?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:28











  • $begingroup$
    You should diagonalize $pmatrix1/sqrt2 & 1/sqrt2 \ 1/sqrt2&-1/sqrt2in SO(2)$ and compute the one parameter subgroup it belongs to
    $endgroup$
    – reuns
    Apr 2 at 2:51
















2












$begingroup$


I'm trying to solve the following question




Question: Prove that all $1$-parameters subgroup of $SO(3)$ are closed. Does this statement holds for $SO(n),$ $n>3$?





Some comments



The $1$-parameters subgroups of $SO(n)$ are the groups



$$P_A := e^tA; A in M_n(mathbbR) textand A+A^T = 0. $$



Since $SO(n)$ is compact the exponential map is surjective, and the map $mathbbRto P_A (tmapsto e^tA)$ is an isomorphism of groups (it is easy to see that $0$ is the unique element of the kernel, sinse $e^B = textId$ $Leftrightarrow B =0$)
homomorphism of groups.



Being honest I can't believe that $P_A$ is closed when $n=3$, the fact of $P_A cong mathbbR$ as a group makes me have no idea of what is going on, once $P_A$ closed would imply $P_A$ compact.



EDIT: After Reuns' help I realised that I wroted thing that does not make any sense.




Can anyone help me?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are you sure that $mathbb R rightarrow P_A$ is an isomorphism? What would make more sense to me is to have $P_A cong mathbb R/mathbb Z$, since closed subsets of compacts are compact as you said.
    $endgroup$
    – D_S
    Apr 2 at 1:50










  • $begingroup$
    @D_S I do think so, because $e^tA=textId$, implies $tA=0$, have I made a mistake?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:01











  • $begingroup$
    I'd say $P_A cong lambda m + BbbZ^n, m in BbbZ subset BbbR^n/ Z^n$ where $2ipi lambda_j$ are the eigenvalues of $A$, and $P_A cong BbbR/Z$ iff the ratios between those eigenvalues are rational. Otherwise $P_A cong BbbR$ and it isn't closed. $e^tA=textId$ implies $QfractA2ipiQ^-1$ is diagonal with integer entries for some $Q$.
    $endgroup$
    – reuns
    Apr 2 at 2:14











  • $begingroup$
    @reuns But if all entries of $A$ and $Q$ are real numbers, then $fract2pi i Q A Q^-1$ is an imaginary matrix. If $A$ is a real matrix then $e^A = I Rightarrow A=0$, isn't it?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:28











  • $begingroup$
    You should diagonalize $pmatrix1/sqrt2 & 1/sqrt2 \ 1/sqrt2&-1/sqrt2in SO(2)$ and compute the one parameter subgroup it belongs to
    $endgroup$
    – reuns
    Apr 2 at 2:51














2












2








2





$begingroup$


I'm trying to solve the following question




Question: Prove that all $1$-parameters subgroup of $SO(3)$ are closed. Does this statement holds for $SO(n),$ $n>3$?





Some comments



The $1$-parameters subgroups of $SO(n)$ are the groups



$$P_A := e^tA; A in M_n(mathbbR) textand A+A^T = 0. $$



Since $SO(n)$ is compact the exponential map is surjective, and the map $mathbbRto P_A (tmapsto e^tA)$ is an isomorphism of groups (it is easy to see that $0$ is the unique element of the kernel, sinse $e^B = textId$ $Leftrightarrow B =0$)
homomorphism of groups.



Being honest I can't believe that $P_A$ is closed when $n=3$, the fact of $P_A cong mathbbR$ as a group makes me have no idea of what is going on, once $P_A$ closed would imply $P_A$ compact.



EDIT: After Reuns' help I realised that I wroted thing that does not make any sense.




Can anyone help me?










share|cite|improve this question











$endgroup$




I'm trying to solve the following question




Question: Prove that all $1$-parameters subgroup of $SO(3)$ are closed. Does this statement holds for $SO(n),$ $n>3$?





Some comments



The $1$-parameters subgroups of $SO(n)$ are the groups



$$P_A := e^tA; A in M_n(mathbbR) textand A+A^T = 0. $$



Since $SO(n)$ is compact the exponential map is surjective, and the map $mathbbRto P_A (tmapsto e^tA)$ is an isomorphism of groups (it is easy to see that $0$ is the unique element of the kernel, sinse $e^B = textId$ $Leftrightarrow B =0$)
homomorphism of groups.



Being honest I can't believe that $P_A$ is closed when $n=3$, the fact of $P_A cong mathbbR$ as a group makes me have no idea of what is going on, once $P_A$ closed would imply $P_A$ compact.



EDIT: After Reuns' help I realised that I wroted thing that does not make any sense.




Can anyone help me?







manifolds differential-topology lie-groups matrix-exponential






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 2 at 5:36









Travis

64.6k769152




64.6k769152










asked Apr 2 at 1:35









Matheus ManzattoMatheus Manzatto

1,3091626




1,3091626











  • $begingroup$
    Are you sure that $mathbb R rightarrow P_A$ is an isomorphism? What would make more sense to me is to have $P_A cong mathbb R/mathbb Z$, since closed subsets of compacts are compact as you said.
    $endgroup$
    – D_S
    Apr 2 at 1:50










  • $begingroup$
    @D_S I do think so, because $e^tA=textId$, implies $tA=0$, have I made a mistake?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:01











  • $begingroup$
    I'd say $P_A cong lambda m + BbbZ^n, m in BbbZ subset BbbR^n/ Z^n$ where $2ipi lambda_j$ are the eigenvalues of $A$, and $P_A cong BbbR/Z$ iff the ratios between those eigenvalues are rational. Otherwise $P_A cong BbbR$ and it isn't closed. $e^tA=textId$ implies $QfractA2ipiQ^-1$ is diagonal with integer entries for some $Q$.
    $endgroup$
    – reuns
    Apr 2 at 2:14











  • $begingroup$
    @reuns But if all entries of $A$ and $Q$ are real numbers, then $fract2pi i Q A Q^-1$ is an imaginary matrix. If $A$ is a real matrix then $e^A = I Rightarrow A=0$, isn't it?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:28











  • $begingroup$
    You should diagonalize $pmatrix1/sqrt2 & 1/sqrt2 \ 1/sqrt2&-1/sqrt2in SO(2)$ and compute the one parameter subgroup it belongs to
    $endgroup$
    – reuns
    Apr 2 at 2:51

















  • $begingroup$
    Are you sure that $mathbb R rightarrow P_A$ is an isomorphism? What would make more sense to me is to have $P_A cong mathbb R/mathbb Z$, since closed subsets of compacts are compact as you said.
    $endgroup$
    – D_S
    Apr 2 at 1:50










  • $begingroup$
    @D_S I do think so, because $e^tA=textId$, implies $tA=0$, have I made a mistake?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:01











  • $begingroup$
    I'd say $P_A cong lambda m + BbbZ^n, m in BbbZ subset BbbR^n/ Z^n$ where $2ipi lambda_j$ are the eigenvalues of $A$, and $P_A cong BbbR/Z$ iff the ratios between those eigenvalues are rational. Otherwise $P_A cong BbbR$ and it isn't closed. $e^tA=textId$ implies $QfractA2ipiQ^-1$ is diagonal with integer entries for some $Q$.
    $endgroup$
    – reuns
    Apr 2 at 2:14











  • $begingroup$
    @reuns But if all entries of $A$ and $Q$ are real numbers, then $fract2pi i Q A Q^-1$ is an imaginary matrix. If $A$ is a real matrix then $e^A = I Rightarrow A=0$, isn't it?
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 2:28











  • $begingroup$
    You should diagonalize $pmatrix1/sqrt2 & 1/sqrt2 \ 1/sqrt2&-1/sqrt2in SO(2)$ and compute the one parameter subgroup it belongs to
    $endgroup$
    – reuns
    Apr 2 at 2:51
















$begingroup$
Are you sure that $mathbb R rightarrow P_A$ is an isomorphism? What would make more sense to me is to have $P_A cong mathbb R/mathbb Z$, since closed subsets of compacts are compact as you said.
$endgroup$
– D_S
Apr 2 at 1:50




$begingroup$
Are you sure that $mathbb R rightarrow P_A$ is an isomorphism? What would make more sense to me is to have $P_A cong mathbb R/mathbb Z$, since closed subsets of compacts are compact as you said.
$endgroup$
– D_S
Apr 2 at 1:50












$begingroup$
@D_S I do think so, because $e^tA=textId$, implies $tA=0$, have I made a mistake?
$endgroup$
– Matheus Manzatto
Apr 2 at 2:01





$begingroup$
@D_S I do think so, because $e^tA=textId$, implies $tA=0$, have I made a mistake?
$endgroup$
– Matheus Manzatto
Apr 2 at 2:01













$begingroup$
I'd say $P_A cong lambda m + BbbZ^n, m in BbbZ subset BbbR^n/ Z^n$ where $2ipi lambda_j$ are the eigenvalues of $A$, and $P_A cong BbbR/Z$ iff the ratios between those eigenvalues are rational. Otherwise $P_A cong BbbR$ and it isn't closed. $e^tA=textId$ implies $QfractA2ipiQ^-1$ is diagonal with integer entries for some $Q$.
$endgroup$
– reuns
Apr 2 at 2:14





$begingroup$
I'd say $P_A cong lambda m + BbbZ^n, m in BbbZ subset BbbR^n/ Z^n$ where $2ipi lambda_j$ are the eigenvalues of $A$, and $P_A cong BbbR/Z$ iff the ratios between those eigenvalues are rational. Otherwise $P_A cong BbbR$ and it isn't closed. $e^tA=textId$ implies $QfractA2ipiQ^-1$ is diagonal with integer entries for some $Q$.
$endgroup$
– reuns
Apr 2 at 2:14













$begingroup$
@reuns But if all entries of $A$ and $Q$ are real numbers, then $fract2pi i Q A Q^-1$ is an imaginary matrix. If $A$ is a real matrix then $e^A = I Rightarrow A=0$, isn't it?
$endgroup$
– Matheus Manzatto
Apr 2 at 2:28





$begingroup$
@reuns But if all entries of $A$ and $Q$ are real numbers, then $fract2pi i Q A Q^-1$ is an imaginary matrix. If $A$ is a real matrix then $e^A = I Rightarrow A=0$, isn't it?
$endgroup$
– Matheus Manzatto
Apr 2 at 2:28













$begingroup$
You should diagonalize $pmatrix1/sqrt2 & 1/sqrt2 \ 1/sqrt2&-1/sqrt2in SO(2)$ and compute the one parameter subgroup it belongs to
$endgroup$
– reuns
Apr 2 at 2:51





$begingroup$
You should diagonalize $pmatrix1/sqrt2 & 1/sqrt2 \ 1/sqrt2&-1/sqrt2in SO(2)$ and compute the one parameter subgroup it belongs to
$endgroup$
– reuns
Apr 2 at 2:51











1 Answer
1






active

oldest

votes


















2












$begingroup$

Hint In this case one can compute the $1$-parameter subgroups rather explicitly.



Consider the one parameter subgroup generated by the skew-symmetric (and hence diagonalizable) matrix $A$. Its eigenvalues are imaginary and (since $A$ is real) closed under conjugation, so the eigenvalues are $+ lambda i, -lambda i, 0$ for some $lambda geq 0 $. Diagonalizing $A$ then gives
$$A = P D P^-1, qquad D := pmatrixlambda i\&-lambda i\&&0 ,$$
for some matrix $P$. Now, compute $exp t A$ in terms of $D$.




Additional hint Using, e.g., the usual series formula for $exp$ gives that $$exp tA = exp t (P D P^-1) = P (exp t D) P^-1 .$$







share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 17:46







  • 1




    $begingroup$
    Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
    $endgroup$
    – Travis
    Apr 2 at 18:52







  • 1




    $begingroup$
    The idea of finding a sequence that converges to $ -I $ is completely superb
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 20:17






  • 1




    $begingroup$
    Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
    $endgroup$
    – reuns
    Apr 2 at 23:40












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171353%2fare-the-1-parameters-subgroups-of-so3-closed%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Hint In this case one can compute the $1$-parameter subgroups rather explicitly.



Consider the one parameter subgroup generated by the skew-symmetric (and hence diagonalizable) matrix $A$. Its eigenvalues are imaginary and (since $A$ is real) closed under conjugation, so the eigenvalues are $+ lambda i, -lambda i, 0$ for some $lambda geq 0 $. Diagonalizing $A$ then gives
$$A = P D P^-1, qquad D := pmatrixlambda i\&-lambda i\&&0 ,$$
for some matrix $P$. Now, compute $exp t A$ in terms of $D$.




Additional hint Using, e.g., the usual series formula for $exp$ gives that $$exp tA = exp t (P D P^-1) = P (exp t D) P^-1 .$$







share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 17:46







  • 1




    $begingroup$
    Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
    $endgroup$
    – Travis
    Apr 2 at 18:52







  • 1




    $begingroup$
    The idea of finding a sequence that converges to $ -I $ is completely superb
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 20:17






  • 1




    $begingroup$
    Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
    $endgroup$
    – reuns
    Apr 2 at 23:40
















2












$begingroup$

Hint In this case one can compute the $1$-parameter subgroups rather explicitly.



Consider the one parameter subgroup generated by the skew-symmetric (and hence diagonalizable) matrix $A$. Its eigenvalues are imaginary and (since $A$ is real) closed under conjugation, so the eigenvalues are $+ lambda i, -lambda i, 0$ for some $lambda geq 0 $. Diagonalizing $A$ then gives
$$A = P D P^-1, qquad D := pmatrixlambda i\&-lambda i\&&0 ,$$
for some matrix $P$. Now, compute $exp t A$ in terms of $D$.




Additional hint Using, e.g., the usual series formula for $exp$ gives that $$exp tA = exp t (P D P^-1) = P (exp t D) P^-1 .$$







share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 17:46







  • 1




    $begingroup$
    Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
    $endgroup$
    – Travis
    Apr 2 at 18:52







  • 1




    $begingroup$
    The idea of finding a sequence that converges to $ -I $ is completely superb
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 20:17






  • 1




    $begingroup$
    Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
    $endgroup$
    – reuns
    Apr 2 at 23:40














2












2








2





$begingroup$

Hint In this case one can compute the $1$-parameter subgroups rather explicitly.



Consider the one parameter subgroup generated by the skew-symmetric (and hence diagonalizable) matrix $A$. Its eigenvalues are imaginary and (since $A$ is real) closed under conjugation, so the eigenvalues are $+ lambda i, -lambda i, 0$ for some $lambda geq 0 $. Diagonalizing $A$ then gives
$$A = P D P^-1, qquad D := pmatrixlambda i\&-lambda i\&&0 ,$$
for some matrix $P$. Now, compute $exp t A$ in terms of $D$.




Additional hint Using, e.g., the usual series formula for $exp$ gives that $$exp tA = exp t (P D P^-1) = P (exp t D) P^-1 .$$







share|cite|improve this answer









$endgroup$



Hint In this case one can compute the $1$-parameter subgroups rather explicitly.



Consider the one parameter subgroup generated by the skew-symmetric (and hence diagonalizable) matrix $A$. Its eigenvalues are imaginary and (since $A$ is real) closed under conjugation, so the eigenvalues are $+ lambda i, -lambda i, 0$ for some $lambda geq 0 $. Diagonalizing $A$ then gives
$$A = P D P^-1, qquad D := pmatrixlambda i\&-lambda i\&&0 ,$$
for some matrix $P$. Now, compute $exp t A$ in terms of $D$.




Additional hint Using, e.g., the usual series formula for $exp$ gives that $$exp tA = exp t (P D P^-1) = P (exp t D) P^-1 .$$








share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 2 at 5:36









TravisTravis

64.6k769152




64.6k769152







  • 1




    $begingroup$
    Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 17:46







  • 1




    $begingroup$
    Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
    $endgroup$
    – Travis
    Apr 2 at 18:52







  • 1




    $begingroup$
    The idea of finding a sequence that converges to $ -I $ is completely superb
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 20:17






  • 1




    $begingroup$
    Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
    $endgroup$
    – reuns
    Apr 2 at 23:40













  • 1




    $begingroup$
    Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 17:46







  • 1




    $begingroup$
    Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
    $endgroup$
    – Travis
    Apr 2 at 18:52







  • 1




    $begingroup$
    The idea of finding a sequence that converges to $ -I $ is completely superb
    $endgroup$
    – Matheus Manzatto
    Apr 2 at 20:17






  • 1




    $begingroup$
    Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
    $endgroup$
    – reuns
    Apr 2 at 23:40








1




1




$begingroup$
Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
$endgroup$
– Matheus Manzatto
Apr 2 at 17:46





$begingroup$
Amazing idea, using it when $SO(n)$ $n>3$, it is clear that we can find a skew-symmetric matrix $A$ such that $$varphi: mathbbRto P_A$$ $$t mapsto e^tA, $$ is a isomorphism (to construct this map we just need to find some skew-symmetric with eigenvalues $i lambda_1$ and $i lambda_2$ such that $lambda_1,lambda_2$ are l.i. under $mathbbQ$ ). Is it clear that $P_A$ is not closed? because maybe $P_A$ is not embedded in $SO(n)$. So say that $mathbbRcong P_A$ as topological spaces (anlysing $P_A$ with subspace topology) seems a little complicated.
$endgroup$
– Matheus Manzatto
Apr 2 at 17:46





1




1




$begingroup$
Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
$endgroup$
– Travis
Apr 2 at 18:52





$begingroup$
Yes, that's exactly right. And yes, in that case $P_A$ is not closed: For example, for $n = 4$ one can find a sequence of points in $P_A$ that converges to $-I$, but this point itself cannot be in $P_A$, and thus $P_A$ is not closed. In particular, the subspace topology on $P_A$ is not the same as the topology induced by declaring $varphi$ to be a homeomorphism. Cf. en.wikipedia.org/wiki/…
$endgroup$
– Travis
Apr 2 at 18:52





1




1




$begingroup$
The idea of finding a sequence that converges to $ -I $ is completely superb
$endgroup$
– Matheus Manzatto
Apr 2 at 20:17




$begingroup$
The idea of finding a sequence that converges to $ -I $ is completely superb
$endgroup$
– Matheus Manzatto
Apr 2 at 20:17




1




1




$begingroup$
Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
$endgroup$
– reuns
Apr 2 at 23:40





$begingroup$
Then we need to show for any admissible $D$ there exists $A in M_n(BbbR), A^top = -A$ such that $A = P D P^-1$, using $Q = pmatrix1 & i \ 1 & -i,QQ^* = 2I$ and $P = pmatrixQ & & \ & Q & \ & & ldots$ @MatheusManzatto
$endgroup$
– reuns
Apr 2 at 23:40


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171353%2fare-the-1-parameters-subgroups-of-so3-closed%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu