$P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Showing $int_0^infty(1-F_X(x))dx=E(X)$ in both discrete and continuous casesDensity/probability function of discrete and continuous random variablesShow $mathbbE(X) = int_0^infty (1-F_X(x)) , dx$ for a continuous random variable $X geq 0$How to show $mathbbE(X) = int_0^infty (1-F_X(x)) , dx$ for a continuous random variable $X geq 0$ without assuming $f_X$ exists?Transformation of Random Variable $Y = X^2$Hypotheses on $X_n_n=1^infty$ and $X$ so that $lim_n f_X_n(x)=f_X(x)$ for a.e. $xinmathbbR$.Use the convolution formula to find the pdfRelationship between pdfs of two related random vectorsShow that $P(X<Y) = int _0^infty F_X(x)f_Y(x) dx$Computing probability function of $Y$ in terms of $f_X$

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Lagrange four-squares theorem --- deterministic complexity

What is an "asse" in Elizabethan English?

What are the discoveries that have been possible with the rejection of positivism?

As Singapore Airlines (Krisflyer) Gold, can I bring my family into the lounge on a domestic Virgin Australia flight?

What does this say in Elvish?

How to write capital alpha?

Intuitive explanation of the rank-nullity theorem

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Why do aircraft stall warning systems use angle-of-attack vanes rather than detecting airflow separation directly?

How does the math work when buying airline miles?

How to compare two different files line by line in unix?

Tannaka duality for semisimple groups

How did Fremen produce and carry enough thumpers to use Sandworms as de facto Ubers?

How to save space when writing equations with cases?

How would a mousetrap for use in space work?

What's the point of the test set?

What makes a man succeed?

How could we fake a moon landing now?

How does light 'choose' between wave and particle behaviour?

How does Belgium enforce obligatory attendance in elections?

An adverb for when you're not exaggerating

Project Euler #1 in C++



$P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Showing $int_0^infty(1-F_X(x))dx=E(X)$ in both discrete and continuous casesDensity/probability function of discrete and continuous random variablesShow $mathbbE(X) = int_0^infty (1-F_X(x)) , dx$ for a continuous random variable $X geq 0$How to show $mathbbE(X) = int_0^infty (1-F_X(x)) , dx$ for a continuous random variable $X geq 0$ without assuming $f_X$ exists?Transformation of Random Variable $Y = X^2$Hypotheses on $X_n_n=1^infty$ and $X$ so that $lim_n f_X_n(x)=f_X(x)$ for a.e. $xinmathbbR$.Use the convolution formula to find the pdfRelationship between pdfs of two related random vectorsShow that $P(X<Y) = int _0^infty F_X(x)f_Y(x) dx$Computing probability function of $Y$ in terms of $f_X$










0












$begingroup$


I was looking at a solution of a probability exercise and the author of the solution uses the formula $$P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx$$ where $X$, $Y$ are the random variables $f_X$ is the density function of the random variable $X$. From where does this result come from?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    It is the Law of total probability for random variables.
    $endgroup$
    – StubbornAtom
    Mar 10 at 20:12











  • $begingroup$
    Oh thanks, I didn't know!
    $endgroup$
    – roi_saumon
    Mar 11 at 16:15










  • $begingroup$
    you should write $P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx=int_0^infty P(Y le x | X=x)f_X(x)dx$ when $X=x$ so $Yleq X=Yleq x$ ($Yleq X=Yleq x$)
    $endgroup$
    – masoud
    Apr 1 at 23:14
















0












$begingroup$


I was looking at a solution of a probability exercise and the author of the solution uses the formula $$P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx$$ where $X$, $Y$ are the random variables $f_X$ is the density function of the random variable $X$. From where does this result come from?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    It is the Law of total probability for random variables.
    $endgroup$
    – StubbornAtom
    Mar 10 at 20:12











  • $begingroup$
    Oh thanks, I didn't know!
    $endgroup$
    – roi_saumon
    Mar 11 at 16:15










  • $begingroup$
    you should write $P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx=int_0^infty P(Y le x | X=x)f_X(x)dx$ when $X=x$ so $Yleq X=Yleq x$ ($Yleq X=Yleq x$)
    $endgroup$
    – masoud
    Apr 1 at 23:14














0












0








0


1



$begingroup$


I was looking at a solution of a probability exercise and the author of the solution uses the formula $$P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx$$ where $X$, $Y$ are the random variables $f_X$ is the density function of the random variable $X$. From where does this result come from?










share|cite|improve this question











$endgroup$




I was looking at a solution of a probability exercise and the author of the solution uses the formula $$P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx$$ where $X$, $Y$ are the random variables $f_X$ is the density function of the random variable $X$. From where does this result come from?







probability probability-theory random-variables conditional-probability density-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 10 at 20:05









gt6989b

36k22557




36k22557










asked Mar 10 at 19:59









roi_saumonroi_saumon

69138




69138







  • 3




    $begingroup$
    It is the Law of total probability for random variables.
    $endgroup$
    – StubbornAtom
    Mar 10 at 20:12











  • $begingroup$
    Oh thanks, I didn't know!
    $endgroup$
    – roi_saumon
    Mar 11 at 16:15










  • $begingroup$
    you should write $P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx=int_0^infty P(Y le x | X=x)f_X(x)dx$ when $X=x$ so $Yleq X=Yleq x$ ($Yleq X=Yleq x$)
    $endgroup$
    – masoud
    Apr 1 at 23:14













  • 3




    $begingroup$
    It is the Law of total probability for random variables.
    $endgroup$
    – StubbornAtom
    Mar 10 at 20:12











  • $begingroup$
    Oh thanks, I didn't know!
    $endgroup$
    – roi_saumon
    Mar 11 at 16:15










  • $begingroup$
    you should write $P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx=int_0^infty P(Y le x | X=x)f_X(x)dx$ when $X=x$ so $Yleq X=Yleq x$ ($Yleq X=Yleq x$)
    $endgroup$
    – masoud
    Apr 1 at 23:14








3




3




$begingroup$
It is the Law of total probability for random variables.
$endgroup$
– StubbornAtom
Mar 10 at 20:12





$begingroup$
It is the Law of total probability for random variables.
$endgroup$
– StubbornAtom
Mar 10 at 20:12













$begingroup$
Oh thanks, I didn't know!
$endgroup$
– roi_saumon
Mar 11 at 16:15




$begingroup$
Oh thanks, I didn't know!
$endgroup$
– roi_saumon
Mar 11 at 16:15












$begingroup$
you should write $P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx=int_0^infty P(Y le x | X=x)f_X(x)dx$ when $X=x$ so $Yleq X=Yleq x$ ($Yleq X=Yleq x$)
$endgroup$
– masoud
Apr 1 at 23:14





$begingroup$
you should write $P(Y le X)=int_0^infty P(Y le X | X=x)f_X(x)dx=int_0^infty P(Y le x | X=x)f_X(x)dx$ when $X=x$ so $Yleq X=Yleq x$ ($Yleq X=Yleq x$)
$endgroup$
– masoud
Apr 1 at 23:14











2 Answers
2






active

oldest

votes


















2












$begingroup$

This is conditional probability. Remember that
$$
mathbbP[A|B] = fracmathbbP[Acap B]mathbbP[B] iff mathbbP[Acap B] = mathbbP[A|B]mathbbP[B]
$$

but if $X$ is continuous, $mathbbP[X=x]=0$, the correct analog being
$$
lim_h to 0^+ mathbbP[x-hle X le x+h] = f_X(x).
$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
    $endgroup$
    – roi_saumon
    Mar 11 at 16:17











  • $begingroup$
    @roi_saumon You interpret $X=x$ as the limit I explained in the answer
    $endgroup$
    – gt6989b
    Mar 11 at 17:37











  • $begingroup$
    So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
    $endgroup$
    – roi_saumon
    Mar 11 at 17:44







  • 1




    $begingroup$
    @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
    $endgroup$
    – gt6989b
    Mar 11 at 19:39










  • $begingroup$
    how you guarantee that limit is exist? is any theorem show that always that limit exist ?
    $endgroup$
    – masoud
    Mar 22 at 11:31


















0












$begingroup$

conditional probability is special case of conditional expectation(definition of conditional probability is based on conditional expectation ).



define:



$A=omega in Omega$



$p(Yleq X)= p(A)=E(I_A)=E(E(I_A|X))$



$=E(g(X))$ (by definition of conditional expectation ,$E(I_A|X)$ is a function of $X$)



$=int g(x) f_X(x) dx=int E(I_A|X=x) f_X(x) dx=int p(A|X=x) f_X(x) dx=int p(Y leq X|X=x) f_X(x) dx=int p(Y leq x|X=x) f_X(x) dx$



so you pass the problem with, $p(X=x)=0$ in $p(Yleq X |X=x)$. since the defination of conditional expectation is based on projection property and not based on $p(A|B)=fracp(A cap B)p(B)$






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142816%2fpy-le-x-int-0-infty-py-le-x-x-xf-xxdx%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    This is conditional probability. Remember that
    $$
    mathbbP[A|B] = fracmathbbP[Acap B]mathbbP[B] iff mathbbP[Acap B] = mathbbP[A|B]mathbbP[B]
    $$

    but if $X$ is continuous, $mathbbP[X=x]=0$, the correct analog being
    $$
    lim_h to 0^+ mathbbP[x-hle X le x+h] = f_X(x).
    $$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
      $endgroup$
      – roi_saumon
      Mar 11 at 16:17











    • $begingroup$
      @roi_saumon You interpret $X=x$ as the limit I explained in the answer
      $endgroup$
      – gt6989b
      Mar 11 at 17:37











    • $begingroup$
      So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
      $endgroup$
      – roi_saumon
      Mar 11 at 17:44







    • 1




      $begingroup$
      @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
      $endgroup$
      – gt6989b
      Mar 11 at 19:39










    • $begingroup$
      how you guarantee that limit is exist? is any theorem show that always that limit exist ?
      $endgroup$
      – masoud
      Mar 22 at 11:31















    2












    $begingroup$

    This is conditional probability. Remember that
    $$
    mathbbP[A|B] = fracmathbbP[Acap B]mathbbP[B] iff mathbbP[Acap B] = mathbbP[A|B]mathbbP[B]
    $$

    but if $X$ is continuous, $mathbbP[X=x]=0$, the correct analog being
    $$
    lim_h to 0^+ mathbbP[x-hle X le x+h] = f_X(x).
    $$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
      $endgroup$
      – roi_saumon
      Mar 11 at 16:17











    • $begingroup$
      @roi_saumon You interpret $X=x$ as the limit I explained in the answer
      $endgroup$
      – gt6989b
      Mar 11 at 17:37











    • $begingroup$
      So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
      $endgroup$
      – roi_saumon
      Mar 11 at 17:44







    • 1




      $begingroup$
      @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
      $endgroup$
      – gt6989b
      Mar 11 at 19:39










    • $begingroup$
      how you guarantee that limit is exist? is any theorem show that always that limit exist ?
      $endgroup$
      – masoud
      Mar 22 at 11:31













    2












    2








    2





    $begingroup$

    This is conditional probability. Remember that
    $$
    mathbbP[A|B] = fracmathbbP[Acap B]mathbbP[B] iff mathbbP[Acap B] = mathbbP[A|B]mathbbP[B]
    $$

    but if $X$ is continuous, $mathbbP[X=x]=0$, the correct analog being
    $$
    lim_h to 0^+ mathbbP[x-hle X le x+h] = f_X(x).
    $$






    share|cite|improve this answer









    $endgroup$



    This is conditional probability. Remember that
    $$
    mathbbP[A|B] = fracmathbbP[Acap B]mathbbP[B] iff mathbbP[Acap B] = mathbbP[A|B]mathbbP[B]
    $$

    but if $X$ is continuous, $mathbbP[X=x]=0$, the correct analog being
    $$
    lim_h to 0^+ mathbbP[x-hle X le x+h] = f_X(x).
    $$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Mar 10 at 20:04









    gt6989bgt6989b

    36k22557




    36k22557











    • $begingroup$
      Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
      $endgroup$
      – roi_saumon
      Mar 11 at 16:17











    • $begingroup$
      @roi_saumon You interpret $X=x$ as the limit I explained in the answer
      $endgroup$
      – gt6989b
      Mar 11 at 17:37











    • $begingroup$
      So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
      $endgroup$
      – roi_saumon
      Mar 11 at 17:44







    • 1




      $begingroup$
      @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
      $endgroup$
      – gt6989b
      Mar 11 at 19:39










    • $begingroup$
      how you guarantee that limit is exist? is any theorem show that always that limit exist ?
      $endgroup$
      – masoud
      Mar 22 at 11:31
















    • $begingroup$
      Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
      $endgroup$
      – roi_saumon
      Mar 11 at 16:17











    • $begingroup$
      @roi_saumon You interpret $X=x$ as the limit I explained in the answer
      $endgroup$
      – gt6989b
      Mar 11 at 17:37











    • $begingroup$
      So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
      $endgroup$
      – roi_saumon
      Mar 11 at 17:44







    • 1




      $begingroup$
      @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
      $endgroup$
      – gt6989b
      Mar 11 at 19:39










    • $begingroup$
      how you guarantee that limit is exist? is any theorem show that always that limit exist ?
      $endgroup$
      – masoud
      Mar 22 at 11:31















    $begingroup$
    Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
    $endgroup$
    – roi_saumon
    Mar 11 at 16:17





    $begingroup$
    Oh thanks. But what does $P(Y le X vert X=x)$ mean? I know that by definition $P(A vert B) = P(A cap B) /P(B)$ but then this would not make sense since as you say, $P(X=x)=0$
    $endgroup$
    – roi_saumon
    Mar 11 at 16:17













    $begingroup$
    @roi_saumon You interpret $X=x$ as the limit I explained in the answer
    $endgroup$
    – gt6989b
    Mar 11 at 17:37





    $begingroup$
    @roi_saumon You interpret $X=x$ as the limit I explained in the answer
    $endgroup$
    – gt6989b
    Mar 11 at 17:37













    $begingroup$
    So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
    $endgroup$
    – roi_saumon
    Mar 11 at 17:44





    $begingroup$
    So $P(Y≤X|X=x)=P(Y≤X, X=x) f_X(x)$ so that $P(Y le X)=int_0^infty P(Y le X, X=x)(f_X(x))^2dx$? Isn't that wrong?
    $endgroup$
    – roi_saumon
    Mar 11 at 17:44





    1




    1




    $begingroup$
    @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
    $endgroup$
    – gt6989b
    Mar 11 at 19:39




    $begingroup$
    @roi_saumon no, what you want to say is $$mathbbP[Y le X] = int_mathbbR mathbbP[Y le X cap X=x] dx = int_mathbbR mathbbP[Y le X | X=x] f_X(x) dx$$
    $endgroup$
    – gt6989b
    Mar 11 at 19:39












    $begingroup$
    how you guarantee that limit is exist? is any theorem show that always that limit exist ?
    $endgroup$
    – masoud
    Mar 22 at 11:31




    $begingroup$
    how you guarantee that limit is exist? is any theorem show that always that limit exist ?
    $endgroup$
    – masoud
    Mar 22 at 11:31











    0












    $begingroup$

    conditional probability is special case of conditional expectation(definition of conditional probability is based on conditional expectation ).



    define:



    $A=omega in Omega$



    $p(Yleq X)= p(A)=E(I_A)=E(E(I_A|X))$



    $=E(g(X))$ (by definition of conditional expectation ,$E(I_A|X)$ is a function of $X$)



    $=int g(x) f_X(x) dx=int E(I_A|X=x) f_X(x) dx=int p(A|X=x) f_X(x) dx=int p(Y leq X|X=x) f_X(x) dx=int p(Y leq x|X=x) f_X(x) dx$



    so you pass the problem with, $p(X=x)=0$ in $p(Yleq X |X=x)$. since the defination of conditional expectation is based on projection property and not based on $p(A|B)=fracp(A cap B)p(B)$






    share|cite|improve this answer











    $endgroup$

















      0












      $begingroup$

      conditional probability is special case of conditional expectation(definition of conditional probability is based on conditional expectation ).



      define:



      $A=omega in Omega$



      $p(Yleq X)= p(A)=E(I_A)=E(E(I_A|X))$



      $=E(g(X))$ (by definition of conditional expectation ,$E(I_A|X)$ is a function of $X$)



      $=int g(x) f_X(x) dx=int E(I_A|X=x) f_X(x) dx=int p(A|X=x) f_X(x) dx=int p(Y leq X|X=x) f_X(x) dx=int p(Y leq x|X=x) f_X(x) dx$



      so you pass the problem with, $p(X=x)=0$ in $p(Yleq X |X=x)$. since the defination of conditional expectation is based on projection property and not based on $p(A|B)=fracp(A cap B)p(B)$






      share|cite|improve this answer











      $endgroup$















        0












        0








        0





        $begingroup$

        conditional probability is special case of conditional expectation(definition of conditional probability is based on conditional expectation ).



        define:



        $A=omega in Omega$



        $p(Yleq X)= p(A)=E(I_A)=E(E(I_A|X))$



        $=E(g(X))$ (by definition of conditional expectation ,$E(I_A|X)$ is a function of $X$)



        $=int g(x) f_X(x) dx=int E(I_A|X=x) f_X(x) dx=int p(A|X=x) f_X(x) dx=int p(Y leq X|X=x) f_X(x) dx=int p(Y leq x|X=x) f_X(x) dx$



        so you pass the problem with, $p(X=x)=0$ in $p(Yleq X |X=x)$. since the defination of conditional expectation is based on projection property and not based on $p(A|B)=fracp(A cap B)p(B)$






        share|cite|improve this answer











        $endgroup$



        conditional probability is special case of conditional expectation(definition of conditional probability is based on conditional expectation ).



        define:



        $A=omega in Omega$



        $p(Yleq X)= p(A)=E(I_A)=E(E(I_A|X))$



        $=E(g(X))$ (by definition of conditional expectation ,$E(I_A|X)$ is a function of $X$)



        $=int g(x) f_X(x) dx=int E(I_A|X=x) f_X(x) dx=int p(A|X=x) f_X(x) dx=int p(Y leq X|X=x) f_X(x) dx=int p(Y leq x|X=x) f_X(x) dx$



        so you pass the problem with, $p(X=x)=0$ in $p(Yleq X |X=x)$. since the defination of conditional expectation is based on projection property and not based on $p(A|B)=fracp(A cap B)p(B)$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 1 at 23:10

























        answered Mar 15 at 10:15









        masoudmasoud

        34718




        34718



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142816%2fpy-le-x-int-0-infty-py-le-x-x-xf-xxdx%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu