Advance Calculus Limit question Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30UTC (7:30pm US/Eastern)Limit $frac00$ which tends to $fracpi2$Limit finding of an indeterminate formStuck on a LimitI need compute a rational limit that involves rootsLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleLimit involving $(1+x)^x$ termSolve a limit without L'Hopital: $ lim_xto0 fracln(cos5x)ln(cos7x)$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Compute $lim_limitsxto -2^-fracsin(x+2)$ without L'Hopital's rule
Karn the great creator - 'card from outside the game' in sealed
Misunderstanding of Sylow theory
macOS: Name for app shortcut screen found by pinching with thumb and three fingers
What is the difference between a "ranged attack" and a "ranged weapon attack"?
Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?
How many morphisms from 1 to 1+1 can there be?
Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode
Most bit efficient text communication method?
Sentence with dass with three Verbs (One modal and two connected with zu)
Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?
What does 丫 mean? 丫是什么意思?
How does light 'choose' between wave and particle behaviour?
Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?
What to do with repeated rejections for phd position
How much damage would a cupful of neutron star matter do to the Earth?
Why are my pictures showing a dark band on one edge?
Drawing spherical mirrors
How could we fake a moon landing now?
Google .dev domain strangely redirects to https
Is there public access to the Meteor Crater in Arizona?
Crossing US/Canada Border for less than 24 hours
C's equality operator on converted pointers
What does Turing mean by this statement?
Flash light on something
Advance Calculus Limit question
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30UTC (7:30pm US/Eastern)Limit $frac00$ which tends to $fracpi2$Limit finding of an indeterminate formStuck on a LimitI need compute a rational limit that involves rootsLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleLimit involving $(1+x)^x$ termSolve a limit without L'Hopital: $ lim_xto0 fracln(cos5x)ln(cos7x)$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Compute $lim_limitsxto -2^-fracsin(x+2)$ without L'Hopital's rule
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus
$endgroup$
add a comment |
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus
$endgroup$
1
$begingroup$
Why have you changed the title of the OP?
$endgroup$
– Paras Khosla
Apr 2 at 7:24
add a comment |
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus
$endgroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus
calculus
edited Apr 2 at 23:56
Foobaz John
23k41552
23k41552
asked Apr 1 at 23:49
Kevin CalderonKevin Calderon
513
513
1
$begingroup$
Why have you changed the title of the OP?
$endgroup$
– Paras Khosla
Apr 2 at 7:24
add a comment |
1
$begingroup$
Why have you changed the title of the OP?
$endgroup$
– Paras Khosla
Apr 2 at 7:24
1
1
$begingroup$
Why have you changed the title of the OP?
$endgroup$
– Paras Khosla
Apr 2 at 7:24
$begingroup$
Why have you changed the title of the OP?
$endgroup$
– Paras Khosla
Apr 2 at 7:24
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
answered Apr 1 at 23:57
Foobaz JohnFoobaz John
23k41552
23k41552
add a comment |
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
answered Apr 2 at 4:11
trancelocationtrancelocation
14.5k1929
14.5k1929
add a comment |
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
answered Apr 2 at 5:25
Paras KhoslaParas Khosla
3,2851627
3,2851627
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Why have you changed the title of the OP?
$endgroup$
– Paras Khosla
Apr 2 at 7:24