Non-trivial divisors Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Are there any non-trivial rational integers in the $p$-adic closure of $1,q,q^2,q^3,…$?The number of positive integers less than 1000 with an odd number of divisorsThe rigorousness of this proof about greatest common divisors.Prove that among any 12 consecutive positive integers there is at least one which is smaller than the sum of its proper divisorsDo all members of this sequence have $8$ divisors?Proper Divisors / Number TheoryConstruct a non trivial homomorphism $mathbb Z_14 tomathbb Z_21$Smallest integer that is divisible by 90 and has exactly 90 distinct positive divisorsInteger divisors of an integerFind all natural numbers $n$, such that polynomial $n^7+n^6+n^5+1$ would have exactly 3 divisors.

What does Turing mean by this statement?

What makes a man succeed?

A letter with no particular backstory

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Crossing US/Canada Border for less than 24 hours

How did Fremen produce and carry enough thumpers to use Sandworms as de facto Ubers?

Flash light on something

Misunderstanding of Sylow theory

How does the math work when buying airline miles?

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

What is the meaning of 'breadth' in breadth first search?

Random body shuffle every night—can we still function?

How to compare two different files line by line in unix?

Why can't I install Tomboy in Ubuntu Mate 19.04?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

How often does castling occur in grandmaster games?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

What would you call this weird metallic apparatus that allows you to lift people?

preposition before coffee

How could we fake a moon landing now?

What does 丫 mean? 丫是什么意思?

Drawing spherical mirrors

In musical terms, what properties are varied by the human voice to produce different words / syllables?

How do I find out the mythology and history of my Fortress?



Non-trivial divisors



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Are there any non-trivial rational integers in the $p$-adic closure of $1,q,q^2,q^3,…$?The number of positive integers less than 1000 with an odd number of divisorsThe rigorousness of this proof about greatest common divisors.Prove that among any 12 consecutive positive integers there is at least one which is smaller than the sum of its proper divisorsDo all members of this sequence have $8$ divisors?Proper Divisors / Number TheoryConstruct a non trivial homomorphism $mathbb Z_14 tomathbb Z_21$Smallest integer that is divisible by 90 and has exactly 90 distinct positive divisorsInteger divisors of an integerFind all natural numbers $n$, such that polynomial $n^7+n^6+n^5+1$ would have exactly 3 divisors.










0












$begingroup$


I want to find out the number of integers whose biggest non-trivial divisor is exactly $k$ times the smallest non-trivial divisor of that integer.



My thoughts are, that the smallest divisor $n$ has to be prime, otherwise the divisor would have smaller divisors, which would divide the larger integer too.
Also the biggest divisor would be $kn$. Also I believe that the integers have to be in the form $mkn$, and then I would have to exclude some of these integers because the property does not hold, but i am not sure how to prove that.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Note that every number (with at least 1 non-trivial divisor) is the product of their smallest and largest non-trivial divisors. This means your number is $kn^2$ for $n$ prime and $k$ having no prime factors less than $n$.
    $endgroup$
    – Don Thousand
    Apr 2 at 0:46











  • $begingroup$
    so the smallest non-trivial divisor has to be prime, and then I get the integer $kn^2$, but the relationship to the number of such integers still eludes me
    $endgroup$
    – M-S-R
    Apr 2 at 0:59















0












$begingroup$


I want to find out the number of integers whose biggest non-trivial divisor is exactly $k$ times the smallest non-trivial divisor of that integer.



My thoughts are, that the smallest divisor $n$ has to be prime, otherwise the divisor would have smaller divisors, which would divide the larger integer too.
Also the biggest divisor would be $kn$. Also I believe that the integers have to be in the form $mkn$, and then I would have to exclude some of these integers because the property does not hold, but i am not sure how to prove that.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Note that every number (with at least 1 non-trivial divisor) is the product of their smallest and largest non-trivial divisors. This means your number is $kn^2$ for $n$ prime and $k$ having no prime factors less than $n$.
    $endgroup$
    – Don Thousand
    Apr 2 at 0:46











  • $begingroup$
    so the smallest non-trivial divisor has to be prime, and then I get the integer $kn^2$, but the relationship to the number of such integers still eludes me
    $endgroup$
    – M-S-R
    Apr 2 at 0:59













0












0








0





$begingroup$


I want to find out the number of integers whose biggest non-trivial divisor is exactly $k$ times the smallest non-trivial divisor of that integer.



My thoughts are, that the smallest divisor $n$ has to be prime, otherwise the divisor would have smaller divisors, which would divide the larger integer too.
Also the biggest divisor would be $kn$. Also I believe that the integers have to be in the form $mkn$, and then I would have to exclude some of these integers because the property does not hold, but i am not sure how to prove that.










share|cite|improve this question









$endgroup$




I want to find out the number of integers whose biggest non-trivial divisor is exactly $k$ times the smallest non-trivial divisor of that integer.



My thoughts are, that the smallest divisor $n$ has to be prime, otherwise the divisor would have smaller divisors, which would divide the larger integer too.
Also the biggest divisor would be $kn$. Also I believe that the integers have to be in the form $mkn$, and then I would have to exclude some of these integers because the property does not hold, but i am not sure how to prove that.







number-theory elementary-number-theory divisibility






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 2 at 0:43









M-S-RM-S-R

505




505







  • 2




    $begingroup$
    Note that every number (with at least 1 non-trivial divisor) is the product of their smallest and largest non-trivial divisors. This means your number is $kn^2$ for $n$ prime and $k$ having no prime factors less than $n$.
    $endgroup$
    – Don Thousand
    Apr 2 at 0:46











  • $begingroup$
    so the smallest non-trivial divisor has to be prime, and then I get the integer $kn^2$, but the relationship to the number of such integers still eludes me
    $endgroup$
    – M-S-R
    Apr 2 at 0:59












  • 2




    $begingroup$
    Note that every number (with at least 1 non-trivial divisor) is the product of their smallest and largest non-trivial divisors. This means your number is $kn^2$ for $n$ prime and $k$ having no prime factors less than $n$.
    $endgroup$
    – Don Thousand
    Apr 2 at 0:46











  • $begingroup$
    so the smallest non-trivial divisor has to be prime, and then I get the integer $kn^2$, but the relationship to the number of such integers still eludes me
    $endgroup$
    – M-S-R
    Apr 2 at 0:59







2




2




$begingroup$
Note that every number (with at least 1 non-trivial divisor) is the product of their smallest and largest non-trivial divisors. This means your number is $kn^2$ for $n$ prime and $k$ having no prime factors less than $n$.
$endgroup$
– Don Thousand
Apr 2 at 0:46





$begingroup$
Note that every number (with at least 1 non-trivial divisor) is the product of their smallest and largest non-trivial divisors. This means your number is $kn^2$ for $n$ prime and $k$ having no prime factors less than $n$.
$endgroup$
– Don Thousand
Apr 2 at 0:46













$begingroup$
so the smallest non-trivial divisor has to be prime, and then I get the integer $kn^2$, but the relationship to the number of such integers still eludes me
$endgroup$
– M-S-R
Apr 2 at 0:59




$begingroup$
so the smallest non-trivial divisor has to be prime, and then I get the integer $kn^2$, but the relationship to the number of such integers still eludes me
$endgroup$
– M-S-R
Apr 2 at 0:59










0






active

oldest

votes












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171318%2fnon-trivial-divisors%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171318%2fnon-trivial-divisors%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu