Computing the adjoint of a linear operator Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Inner Product and Orthogonal PolynomialsWhat are common notations for the endomorphism group of a vector space?Find an ordered basis $B$ for $M_ntimes n(mathbbR)$ such that $[T]B$ is a diagonal matrix for $n > 2$Why is $dim(W)=3$?Adjoint Operator and InverseLinear transformation is self-adjoint iff its associated matrix in the standard basis is symmetricWhat does adjoint of a linear map?Linear Algebra TextbookLinear operator and orthonormal basisSimultaneous diagonalization of self adjoint matrices

How do I find out the mythology and history of my Fortress?

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Electrolysis of water: Which equations to use? (IB Chem)

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

What order were files/directories output in dir?

What makes a man succeed?

Lagrange four-squares theorem --- deterministic complexity

Dyck paths with extra diagonals from valleys (Laser construction)

Why weren't discrete x86 CPUs ever used in game hardware?

How were pictures turned from film to a big picture in a picture frame before digital scanning?

Why are my pictures showing a dark band on one edge?

How do living politicians protect their readily obtainable signatures from misuse?

How long can equipment go unused before powering up runs the risk of damage?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Would it be easier to apply for a UK visa if there is a host family to sponsor for you in going there?

What's the point of the test set?

Did any compiler fully use 80-bit floating point?

How to compare two different files line by line in unix?

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

How does light 'choose' between wave and particle behaviour?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

Is it fair for a professor to grade us on the possession of past papers?

A term for a woman complaining about things/begging in a cute/childish way

Draw 4 of the same figure in the same tikzpicture



Computing the adjoint of a linear operator



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Inner Product and Orthogonal PolynomialsWhat are common notations for the endomorphism group of a vector space?Find an ordered basis $B$ for $M_ntimes n(mathbbR)$ such that $[T]B$ is a diagonal matrix for $n > 2$Why is $dim(W)=3$?Adjoint Operator and InverseLinear transformation is self-adjoint iff its associated matrix in the standard basis is symmetricWhat does adjoint of a linear map?Linear Algebra TextbookLinear operator and orthonormal basisSimultaneous diagonalization of self adjoint matrices










0












$begingroup$


I am taking an linear algebra class and we are on inner product space. I have a question that wants us to evaluate $T^*$ at a given vector. This is not a homework question, it is a textbook question, specifically question 3c in 6.3 of Linear Algebra by Friedberg, Insel, Spence (pg 366). I will it write out though:




$V=P_1(R)$ (the set of polynomials with degree $leq 1$ with real coefficients) with $langle f,grangle=int_-1^1f(t)g(t)dt,$ $T(f)=f'+3f.$ Compute $T^*(f(t))$ where $f(t)=4-2t$.




I know the answer (it's in the textbook) but I am not sure how to obtain the solution. It's my understanding that since $V$ is finite-dimensional we know there is an adjoint and that for all $f,gin P_1(R)$ $langle T(g),frangle=langle g,T^*(f)rangle$. I tried setting $f=4-2t$ and I thought maybe set $g=1$ to make my computation easier but I don't think I am getting this right. I also decided to take the standard basis for $P_1(R)$ and used Gram-Schmidt to obtain an orthonormal basis $gamma = frac1sqrt2,sqrtfrac32x$. I am not really sure what to do next, like do I need to calculate the exact adjoint map or something. Any help would be greatly appreciated.



UPDATE: I figured out based on the comment made by darij grinberg. I used the fact that $langle T(g),frangle=langle g,T^*(f)rangle$ where $g=1$ and $g=t$ and setting $T^*(f) = a+bt$ and figuring out $a$ and $b$ and then using that to compute $T^*(4-2t)$.










share|cite|improve this question











$endgroup$











  • $begingroup$
    What does $P_1left(Rright)$ mean? Polynomials of degree $leq 1$ with real coefficients?
    $endgroup$
    – darij grinberg
    Apr 2 at 1:00











  • $begingroup$
    Oh yes, sorry exactly @darijgrinberg
    $endgroup$
    – InsigMath
    Apr 2 at 1:01






  • 2




    $begingroup$
    The simplest way to compute $T^*(f)$ is probably to set $T^*(f) = a + bt$ with unknown constants $a$ and $b$, and then solve the system of the two linear equations $left<T(g), fright> = left<g, T^*(f)right>$ for $g = 1$ and $g = t$. (You have to rewrite these equations as explicit linear equations in $a$ and $b$, but you can do this, since the bilinear form is given as an easily computable integral.)
    $endgroup$
    – darij grinberg
    Apr 2 at 1:04










  • $begingroup$
    Thanks @darijgrinberg I will try that out, but since I don't know $T^*$ explicitly will that lead to issues? But I will try this right now and see what I get!
    $endgroup$
    – InsigMath
    Apr 2 at 1:07










  • $begingroup$
    No, just rewrite $T^*(f) = a + bt$ every time you encounter $T^*(f)$.
    $endgroup$
    – darij grinberg
    Apr 2 at 1:07















0












$begingroup$


I am taking an linear algebra class and we are on inner product space. I have a question that wants us to evaluate $T^*$ at a given vector. This is not a homework question, it is a textbook question, specifically question 3c in 6.3 of Linear Algebra by Friedberg, Insel, Spence (pg 366). I will it write out though:




$V=P_1(R)$ (the set of polynomials with degree $leq 1$ with real coefficients) with $langle f,grangle=int_-1^1f(t)g(t)dt,$ $T(f)=f'+3f.$ Compute $T^*(f(t))$ where $f(t)=4-2t$.




I know the answer (it's in the textbook) but I am not sure how to obtain the solution. It's my understanding that since $V$ is finite-dimensional we know there is an adjoint and that for all $f,gin P_1(R)$ $langle T(g),frangle=langle g,T^*(f)rangle$. I tried setting $f=4-2t$ and I thought maybe set $g=1$ to make my computation easier but I don't think I am getting this right. I also decided to take the standard basis for $P_1(R)$ and used Gram-Schmidt to obtain an orthonormal basis $gamma = frac1sqrt2,sqrtfrac32x$. I am not really sure what to do next, like do I need to calculate the exact adjoint map or something. Any help would be greatly appreciated.



UPDATE: I figured out based on the comment made by darij grinberg. I used the fact that $langle T(g),frangle=langle g,T^*(f)rangle$ where $g=1$ and $g=t$ and setting $T^*(f) = a+bt$ and figuring out $a$ and $b$ and then using that to compute $T^*(4-2t)$.










share|cite|improve this question











$endgroup$











  • $begingroup$
    What does $P_1left(Rright)$ mean? Polynomials of degree $leq 1$ with real coefficients?
    $endgroup$
    – darij grinberg
    Apr 2 at 1:00











  • $begingroup$
    Oh yes, sorry exactly @darijgrinberg
    $endgroup$
    – InsigMath
    Apr 2 at 1:01






  • 2




    $begingroup$
    The simplest way to compute $T^*(f)$ is probably to set $T^*(f) = a + bt$ with unknown constants $a$ and $b$, and then solve the system of the two linear equations $left<T(g), fright> = left<g, T^*(f)right>$ for $g = 1$ and $g = t$. (You have to rewrite these equations as explicit linear equations in $a$ and $b$, but you can do this, since the bilinear form is given as an easily computable integral.)
    $endgroup$
    – darij grinberg
    Apr 2 at 1:04










  • $begingroup$
    Thanks @darijgrinberg I will try that out, but since I don't know $T^*$ explicitly will that lead to issues? But I will try this right now and see what I get!
    $endgroup$
    – InsigMath
    Apr 2 at 1:07










  • $begingroup$
    No, just rewrite $T^*(f) = a + bt$ every time you encounter $T^*(f)$.
    $endgroup$
    – darij grinberg
    Apr 2 at 1:07













0












0








0





$begingroup$


I am taking an linear algebra class and we are on inner product space. I have a question that wants us to evaluate $T^*$ at a given vector. This is not a homework question, it is a textbook question, specifically question 3c in 6.3 of Linear Algebra by Friedberg, Insel, Spence (pg 366). I will it write out though:




$V=P_1(R)$ (the set of polynomials with degree $leq 1$ with real coefficients) with $langle f,grangle=int_-1^1f(t)g(t)dt,$ $T(f)=f'+3f.$ Compute $T^*(f(t))$ where $f(t)=4-2t$.




I know the answer (it's in the textbook) but I am not sure how to obtain the solution. It's my understanding that since $V$ is finite-dimensional we know there is an adjoint and that for all $f,gin P_1(R)$ $langle T(g),frangle=langle g,T^*(f)rangle$. I tried setting $f=4-2t$ and I thought maybe set $g=1$ to make my computation easier but I don't think I am getting this right. I also decided to take the standard basis for $P_1(R)$ and used Gram-Schmidt to obtain an orthonormal basis $gamma = frac1sqrt2,sqrtfrac32x$. I am not really sure what to do next, like do I need to calculate the exact adjoint map or something. Any help would be greatly appreciated.



UPDATE: I figured out based on the comment made by darij grinberg. I used the fact that $langle T(g),frangle=langle g,T^*(f)rangle$ where $g=1$ and $g=t$ and setting $T^*(f) = a+bt$ and figuring out $a$ and $b$ and then using that to compute $T^*(4-2t)$.










share|cite|improve this question











$endgroup$




I am taking an linear algebra class and we are on inner product space. I have a question that wants us to evaluate $T^*$ at a given vector. This is not a homework question, it is a textbook question, specifically question 3c in 6.3 of Linear Algebra by Friedberg, Insel, Spence (pg 366). I will it write out though:




$V=P_1(R)$ (the set of polynomials with degree $leq 1$ with real coefficients) with $langle f,grangle=int_-1^1f(t)g(t)dt,$ $T(f)=f'+3f.$ Compute $T^*(f(t))$ where $f(t)=4-2t$.




I know the answer (it's in the textbook) but I am not sure how to obtain the solution. It's my understanding that since $V$ is finite-dimensional we know there is an adjoint and that for all $f,gin P_1(R)$ $langle T(g),frangle=langle g,T^*(f)rangle$. I tried setting $f=4-2t$ and I thought maybe set $g=1$ to make my computation easier but I don't think I am getting this right. I also decided to take the standard basis for $P_1(R)$ and used Gram-Schmidt to obtain an orthonormal basis $gamma = frac1sqrt2,sqrtfrac32x$. I am not really sure what to do next, like do I need to calculate the exact adjoint map or something. Any help would be greatly appreciated.



UPDATE: I figured out based on the comment made by darij grinberg. I used the fact that $langle T(g),frangle=langle g,T^*(f)rangle$ where $g=1$ and $g=t$ and setting $T^*(f) = a+bt$ and figuring out $a$ and $b$ and then using that to compute $T^*(4-2t)$.







linear-algebra linear-transformations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 2 at 1:26







InsigMath

















asked Apr 2 at 0:56









InsigMathInsigMath

1,01021021




1,01021021











  • $begingroup$
    What does $P_1left(Rright)$ mean? Polynomials of degree $leq 1$ with real coefficients?
    $endgroup$
    – darij grinberg
    Apr 2 at 1:00











  • $begingroup$
    Oh yes, sorry exactly @darijgrinberg
    $endgroup$
    – InsigMath
    Apr 2 at 1:01






  • 2




    $begingroup$
    The simplest way to compute $T^*(f)$ is probably to set $T^*(f) = a + bt$ with unknown constants $a$ and $b$, and then solve the system of the two linear equations $left<T(g), fright> = left<g, T^*(f)right>$ for $g = 1$ and $g = t$. (You have to rewrite these equations as explicit linear equations in $a$ and $b$, but you can do this, since the bilinear form is given as an easily computable integral.)
    $endgroup$
    – darij grinberg
    Apr 2 at 1:04










  • $begingroup$
    Thanks @darijgrinberg I will try that out, but since I don't know $T^*$ explicitly will that lead to issues? But I will try this right now and see what I get!
    $endgroup$
    – InsigMath
    Apr 2 at 1:07










  • $begingroup$
    No, just rewrite $T^*(f) = a + bt$ every time you encounter $T^*(f)$.
    $endgroup$
    – darij grinberg
    Apr 2 at 1:07
















  • $begingroup$
    What does $P_1left(Rright)$ mean? Polynomials of degree $leq 1$ with real coefficients?
    $endgroup$
    – darij grinberg
    Apr 2 at 1:00











  • $begingroup$
    Oh yes, sorry exactly @darijgrinberg
    $endgroup$
    – InsigMath
    Apr 2 at 1:01






  • 2




    $begingroup$
    The simplest way to compute $T^*(f)$ is probably to set $T^*(f) = a + bt$ with unknown constants $a$ and $b$, and then solve the system of the two linear equations $left<T(g), fright> = left<g, T^*(f)right>$ for $g = 1$ and $g = t$. (You have to rewrite these equations as explicit linear equations in $a$ and $b$, but you can do this, since the bilinear form is given as an easily computable integral.)
    $endgroup$
    – darij grinberg
    Apr 2 at 1:04










  • $begingroup$
    Thanks @darijgrinberg I will try that out, but since I don't know $T^*$ explicitly will that lead to issues? But I will try this right now and see what I get!
    $endgroup$
    – InsigMath
    Apr 2 at 1:07










  • $begingroup$
    No, just rewrite $T^*(f) = a + bt$ every time you encounter $T^*(f)$.
    $endgroup$
    – darij grinberg
    Apr 2 at 1:07















$begingroup$
What does $P_1left(Rright)$ mean? Polynomials of degree $leq 1$ with real coefficients?
$endgroup$
– darij grinberg
Apr 2 at 1:00





$begingroup$
What does $P_1left(Rright)$ mean? Polynomials of degree $leq 1$ with real coefficients?
$endgroup$
– darij grinberg
Apr 2 at 1:00













$begingroup$
Oh yes, sorry exactly @darijgrinberg
$endgroup$
– InsigMath
Apr 2 at 1:01




$begingroup$
Oh yes, sorry exactly @darijgrinberg
$endgroup$
– InsigMath
Apr 2 at 1:01




2




2




$begingroup$
The simplest way to compute $T^*(f)$ is probably to set $T^*(f) = a + bt$ with unknown constants $a$ and $b$, and then solve the system of the two linear equations $left<T(g), fright> = left<g, T^*(f)right>$ for $g = 1$ and $g = t$. (You have to rewrite these equations as explicit linear equations in $a$ and $b$, but you can do this, since the bilinear form is given as an easily computable integral.)
$endgroup$
– darij grinberg
Apr 2 at 1:04




$begingroup$
The simplest way to compute $T^*(f)$ is probably to set $T^*(f) = a + bt$ with unknown constants $a$ and $b$, and then solve the system of the two linear equations $left<T(g), fright> = left<g, T^*(f)right>$ for $g = 1$ and $g = t$. (You have to rewrite these equations as explicit linear equations in $a$ and $b$, but you can do this, since the bilinear form is given as an easily computable integral.)
$endgroup$
– darij grinberg
Apr 2 at 1:04












$begingroup$
Thanks @darijgrinberg I will try that out, but since I don't know $T^*$ explicitly will that lead to issues? But I will try this right now and see what I get!
$endgroup$
– InsigMath
Apr 2 at 1:07




$begingroup$
Thanks @darijgrinberg I will try that out, but since I don't know $T^*$ explicitly will that lead to issues? But I will try this right now and see what I get!
$endgroup$
– InsigMath
Apr 2 at 1:07












$begingroup$
No, just rewrite $T^*(f) = a + bt$ every time you encounter $T^*(f)$.
$endgroup$
– darij grinberg
Apr 2 at 1:07




$begingroup$
No, just rewrite $T^*(f) = a + bt$ every time you encounter $T^*(f)$.
$endgroup$
– darij grinberg
Apr 2 at 1:07










0






active

oldest

votes












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171332%2fcomputing-the-adjoint-of-a-linear-operator%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171332%2fcomputing-the-adjoint-of-a-linear-operator%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu