Hahn Banach Theorem implying existence of a nonzero linear functional taking 0 in a linear subspace Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Hahn Banach theorem with no dominating sublinear functionalWhy do we need the Hahn-Banach Theorem to extend a bounded linear functional?Incorrect proof of Hahn Banach TheoremTrouble Applying Hahn-Banach TheoremWhat kind of assumptions can be made from the Hahn-Banach theorem?Hahn Banach extension of linear functional $f$Consequence of the Hahn-Banach TheoremConfusion on application of Hahn Banach Theoremconsequence of Hahn-Banach theorem$F(y) = F(x)$ for aribtrary continuous linear functional $F$, then by Hahn-Banach $y=x$?

preposition before coffee

Is CEO the "profession" with the most psychopaths?

The test team as an enemy of development? And how can this be avoided?

Tannaka duality for semisimple groups

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

How many morphisms from 1 to 1+1 can there be?

How does Belgium enforce obligatory attendance in elections?

Draw 4 of the same figure in the same tikzpicture

Is there any word for a place full of confusion?

How were pictures turned from film to a big picture in a picture frame before digital scanning?

Trademark violation for app?

Putting class ranking in CV, but against dept guidelines

What's the point of the test set?

What would you call this weird metallic apparatus that allows you to lift people?

How to report t statistic from R

As Singapore Airlines (Krisflyer) Gold, can I bring my family into the lounge on a domestic Virgin Australia flight?

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

What does Turing mean by this statement?

Antipodal Land Area Calculation

What are the discoveries that have been possible with the rejection of positivism?

What does 丫 mean? 丫是什么意思?

Why are vacuum tubes still used in amateur radios?

Is multiple magic items in one inherently imbalanced?

What makes a man succeed?



Hahn Banach Theorem implying existence of a nonzero linear functional taking 0 in a linear subspace



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Hahn Banach theorem with no dominating sublinear functionalWhy do we need the Hahn-Banach Theorem to extend a bounded linear functional?Incorrect proof of Hahn Banach TheoremTrouble Applying Hahn-Banach TheoremWhat kind of assumptions can be made from the Hahn-Banach theorem?Hahn Banach extension of linear functional $f$Consequence of the Hahn-Banach TheoremConfusion on application of Hahn Banach Theoremconsequence of Hahn-Banach theorem$F(y) = F(x)$ for aribtrary continuous linear functional $F$, then by Hahn-Banach $y=x$?










0












$begingroup$


I am reading this paper. In the proof of theorem 1, it is stated




By the Hahn-Banach theorem, there is a bounded linear functional on $C(I_n)$, call it $L$, with the property that $Lne 0$ but $L(R) = L(S) = 0$.




$C(I_n)$ is space of continuous functions on $[0,1]^n$. $S$ is a linear subspace in it. $R$ is the closure of $S$.



Can you explain to me why this statement is true?










share|cite|improve this question









$endgroup$











  • $begingroup$
    This is true as long as $R$ is not the entire space. What version of the Hahn-Banach Theorem do you know? There's one that's almost exactly this statement.
    $endgroup$
    – Jose27
    Apr 2 at 1:59










  • $begingroup$
    I was looking at Rudin 1991. Also Friedman's lemma and theorem. I see on Wikipedia they list something very similar as an important consequence.
    $endgroup$
    – ztyh
    Apr 2 at 2:11










  • $begingroup$
    They do assume $R$ is not all of $C(I_n)$.
    $endgroup$
    – ztyh
    Apr 2 at 2:33















0












$begingroup$


I am reading this paper. In the proof of theorem 1, it is stated




By the Hahn-Banach theorem, there is a bounded linear functional on $C(I_n)$, call it $L$, with the property that $Lne 0$ but $L(R) = L(S) = 0$.




$C(I_n)$ is space of continuous functions on $[0,1]^n$. $S$ is a linear subspace in it. $R$ is the closure of $S$.



Can you explain to me why this statement is true?










share|cite|improve this question









$endgroup$











  • $begingroup$
    This is true as long as $R$ is not the entire space. What version of the Hahn-Banach Theorem do you know? There's one that's almost exactly this statement.
    $endgroup$
    – Jose27
    Apr 2 at 1:59










  • $begingroup$
    I was looking at Rudin 1991. Also Friedman's lemma and theorem. I see on Wikipedia they list something very similar as an important consequence.
    $endgroup$
    – ztyh
    Apr 2 at 2:11










  • $begingroup$
    They do assume $R$ is not all of $C(I_n)$.
    $endgroup$
    – ztyh
    Apr 2 at 2:33













0












0








0





$begingroup$


I am reading this paper. In the proof of theorem 1, it is stated




By the Hahn-Banach theorem, there is a bounded linear functional on $C(I_n)$, call it $L$, with the property that $Lne 0$ but $L(R) = L(S) = 0$.




$C(I_n)$ is space of continuous functions on $[0,1]^n$. $S$ is a linear subspace in it. $R$ is the closure of $S$.



Can you explain to me why this statement is true?










share|cite|improve this question









$endgroup$




I am reading this paper. In the proof of theorem 1, it is stated




By the Hahn-Banach theorem, there is a bounded linear functional on $C(I_n)$, call it $L$, with the property that $Lne 0$ but $L(R) = L(S) = 0$.




$C(I_n)$ is space of continuous functions on $[0,1]^n$. $S$ is a linear subspace in it. $R$ is the closure of $S$.



Can you explain to me why this statement is true?







functional-analysis continuity unbounded-operators hahn-banach-theorem geometric-functional-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 2 at 1:33









ztyhztyh

468




468











  • $begingroup$
    This is true as long as $R$ is not the entire space. What version of the Hahn-Banach Theorem do you know? There's one that's almost exactly this statement.
    $endgroup$
    – Jose27
    Apr 2 at 1:59










  • $begingroup$
    I was looking at Rudin 1991. Also Friedman's lemma and theorem. I see on Wikipedia they list something very similar as an important consequence.
    $endgroup$
    – ztyh
    Apr 2 at 2:11










  • $begingroup$
    They do assume $R$ is not all of $C(I_n)$.
    $endgroup$
    – ztyh
    Apr 2 at 2:33
















  • $begingroup$
    This is true as long as $R$ is not the entire space. What version of the Hahn-Banach Theorem do you know? There's one that's almost exactly this statement.
    $endgroup$
    – Jose27
    Apr 2 at 1:59










  • $begingroup$
    I was looking at Rudin 1991. Also Friedman's lemma and theorem. I see on Wikipedia they list something very similar as an important consequence.
    $endgroup$
    – ztyh
    Apr 2 at 2:11










  • $begingroup$
    They do assume $R$ is not all of $C(I_n)$.
    $endgroup$
    – ztyh
    Apr 2 at 2:33















$begingroup$
This is true as long as $R$ is not the entire space. What version of the Hahn-Banach Theorem do you know? There's one that's almost exactly this statement.
$endgroup$
– Jose27
Apr 2 at 1:59




$begingroup$
This is true as long as $R$ is not the entire space. What version of the Hahn-Banach Theorem do you know? There's one that's almost exactly this statement.
$endgroup$
– Jose27
Apr 2 at 1:59












$begingroup$
I was looking at Rudin 1991. Also Friedman's lemma and theorem. I see on Wikipedia they list something very similar as an important consequence.
$endgroup$
– ztyh
Apr 2 at 2:11




$begingroup$
I was looking at Rudin 1991. Also Friedman's lemma and theorem. I see on Wikipedia they list something very similar as an important consequence.
$endgroup$
– ztyh
Apr 2 at 2:11












$begingroup$
They do assume $R$ is not all of $C(I_n)$.
$endgroup$
– ztyh
Apr 2 at 2:33




$begingroup$
They do assume $R$ is not all of $C(I_n)$.
$endgroup$
– ztyh
Apr 2 at 2:33










1 Answer
1






active

oldest

votes


















1












$begingroup$

Let $M=f+af_0:ain mathbb R$ where $f_0$ is any fixed element not in $R$. Define $T(f+af_0)=a$. If we show that this is continuous on the space spanned by $R cup f_0$ we can use Hahn Banach Theorem to get a continuous linear functional which is $0$ on $R$ and has the value $1$ at $f_0$. I will let you verify that $T$ is well defined. Suppose $f_n+a_nf_0 to g$. If $(a_n)$ is unbounded it has a subsequence $a_n'$ converging to $pm infty$. Dividing by this we get $frac f_n' a_n' +f_0=0$ which shows that $-f_0$ is the limit of sequence from $R$ which is a contardiction. Hence $(a_n)$ is bounded and it has subsequence converging to some $a$. we then get $f_n+a_nf_0 to g=f+af_0$ for some $f in R$ and $a=T(g)=lim a_n' =lim T(f_n'+a_n'f_0)$. By arguing with subsequences we see that $T$ is continuous.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    What exactly do I have to say about $T$ being well defined?
    $endgroup$
    – ztyh
    Apr 2 at 14:47










  • $begingroup$
    Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
    $endgroup$
    – ztyh
    Apr 2 at 15:31






  • 1




    $begingroup$
    @ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
    $endgroup$
    – Kavi Rama Murthy
    Apr 2 at 23:06










  • $begingroup$
    Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
    $endgroup$
    – ztyh
    Apr 3 at 22:32











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171351%2fhahn-banach-theorem-implying-existence-of-a-nonzero-linear-functional-taking-0-i%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Let $M=f+af_0:ain mathbb R$ where $f_0$ is any fixed element not in $R$. Define $T(f+af_0)=a$. If we show that this is continuous on the space spanned by $R cup f_0$ we can use Hahn Banach Theorem to get a continuous linear functional which is $0$ on $R$ and has the value $1$ at $f_0$. I will let you verify that $T$ is well defined. Suppose $f_n+a_nf_0 to g$. If $(a_n)$ is unbounded it has a subsequence $a_n'$ converging to $pm infty$. Dividing by this we get $frac f_n' a_n' +f_0=0$ which shows that $-f_0$ is the limit of sequence from $R$ which is a contardiction. Hence $(a_n)$ is bounded and it has subsequence converging to some $a$. we then get $f_n+a_nf_0 to g=f+af_0$ for some $f in R$ and $a=T(g)=lim a_n' =lim T(f_n'+a_n'f_0)$. By arguing with subsequences we see that $T$ is continuous.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    What exactly do I have to say about $T$ being well defined?
    $endgroup$
    – ztyh
    Apr 2 at 14:47










  • $begingroup$
    Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
    $endgroup$
    – ztyh
    Apr 2 at 15:31






  • 1




    $begingroup$
    @ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
    $endgroup$
    – Kavi Rama Murthy
    Apr 2 at 23:06










  • $begingroup$
    Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
    $endgroup$
    – ztyh
    Apr 3 at 22:32















1












$begingroup$

Let $M=f+af_0:ain mathbb R$ where $f_0$ is any fixed element not in $R$. Define $T(f+af_0)=a$. If we show that this is continuous on the space spanned by $R cup f_0$ we can use Hahn Banach Theorem to get a continuous linear functional which is $0$ on $R$ and has the value $1$ at $f_0$. I will let you verify that $T$ is well defined. Suppose $f_n+a_nf_0 to g$. If $(a_n)$ is unbounded it has a subsequence $a_n'$ converging to $pm infty$. Dividing by this we get $frac f_n' a_n' +f_0=0$ which shows that $-f_0$ is the limit of sequence from $R$ which is a contardiction. Hence $(a_n)$ is bounded and it has subsequence converging to some $a$. we then get $f_n+a_nf_0 to g=f+af_0$ for some $f in R$ and $a=T(g)=lim a_n' =lim T(f_n'+a_n'f_0)$. By arguing with subsequences we see that $T$ is continuous.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    What exactly do I have to say about $T$ being well defined?
    $endgroup$
    – ztyh
    Apr 2 at 14:47










  • $begingroup$
    Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
    $endgroup$
    – ztyh
    Apr 2 at 15:31






  • 1




    $begingroup$
    @ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
    $endgroup$
    – Kavi Rama Murthy
    Apr 2 at 23:06










  • $begingroup$
    Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
    $endgroup$
    – ztyh
    Apr 3 at 22:32













1












1








1





$begingroup$

Let $M=f+af_0:ain mathbb R$ where $f_0$ is any fixed element not in $R$. Define $T(f+af_0)=a$. If we show that this is continuous on the space spanned by $R cup f_0$ we can use Hahn Banach Theorem to get a continuous linear functional which is $0$ on $R$ and has the value $1$ at $f_0$. I will let you verify that $T$ is well defined. Suppose $f_n+a_nf_0 to g$. If $(a_n)$ is unbounded it has a subsequence $a_n'$ converging to $pm infty$. Dividing by this we get $frac f_n' a_n' +f_0=0$ which shows that $-f_0$ is the limit of sequence from $R$ which is a contardiction. Hence $(a_n)$ is bounded and it has subsequence converging to some $a$. we then get $f_n+a_nf_0 to g=f+af_0$ for some $f in R$ and $a=T(g)=lim a_n' =lim T(f_n'+a_n'f_0)$. By arguing with subsequences we see that $T$ is continuous.






share|cite|improve this answer









$endgroup$



Let $M=f+af_0:ain mathbb R$ where $f_0$ is any fixed element not in $R$. Define $T(f+af_0)=a$. If we show that this is continuous on the space spanned by $R cup f_0$ we can use Hahn Banach Theorem to get a continuous linear functional which is $0$ on $R$ and has the value $1$ at $f_0$. I will let you verify that $T$ is well defined. Suppose $f_n+a_nf_0 to g$. If $(a_n)$ is unbounded it has a subsequence $a_n'$ converging to $pm infty$. Dividing by this we get $frac f_n' a_n' +f_0=0$ which shows that $-f_0$ is the limit of sequence from $R$ which is a contardiction. Hence $(a_n)$ is bounded and it has subsequence converging to some $a$. we then get $f_n+a_nf_0 to g=f+af_0$ for some $f in R$ and $a=T(g)=lim a_n' =lim T(f_n'+a_n'f_0)$. By arguing with subsequences we see that $T$ is continuous.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 2 at 6:22









Kavi Rama MurthyKavi Rama Murthy

76.1k53370




76.1k53370











  • $begingroup$
    What exactly do I have to say about $T$ being well defined?
    $endgroup$
    – ztyh
    Apr 2 at 14:47










  • $begingroup$
    Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
    $endgroup$
    – ztyh
    Apr 2 at 15:31






  • 1




    $begingroup$
    @ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
    $endgroup$
    – Kavi Rama Murthy
    Apr 2 at 23:06










  • $begingroup$
    Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
    $endgroup$
    – ztyh
    Apr 3 at 22:32
















  • $begingroup$
    What exactly do I have to say about $T$ being well defined?
    $endgroup$
    – ztyh
    Apr 2 at 14:47










  • $begingroup$
    Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
    $endgroup$
    – ztyh
    Apr 2 at 15:31






  • 1




    $begingroup$
    @ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
    $endgroup$
    – Kavi Rama Murthy
    Apr 2 at 23:06










  • $begingroup$
    Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
    $endgroup$
    – ztyh
    Apr 3 at 22:32















$begingroup$
What exactly do I have to say about $T$ being well defined?
$endgroup$
– ztyh
Apr 2 at 14:47




$begingroup$
What exactly do I have to say about $T$ being well defined?
$endgroup$
– ztyh
Apr 2 at 14:47












$begingroup$
Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
$endgroup$
– ztyh
Apr 2 at 15:31




$begingroup$
Also can I just say $T(lim [f_n+a_nf_0])=lim a_n=lim T(f_n+a_nf_0)$ to show that it is continuous and then say $T$ is linear?
$endgroup$
– ztyh
Apr 2 at 15:31




1




1




$begingroup$
@ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
$endgroup$
– Kavi Rama Murthy
Apr 2 at 23:06




$begingroup$
@ztyh No you cannot show continuity this way because we don't know that $lim a_n$ exists.
$endgroup$
– Kavi Rama Murthy
Apr 2 at 23:06












$begingroup$
Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
$endgroup$
– ztyh
Apr 3 at 22:32




$begingroup$
Can I just use bounded iff continuous? When you prove $(a_n)$ cannot tend to $infty$, you can say $T$ is bounded and that is the end of the proof?
$endgroup$
– ztyh
Apr 3 at 22:32

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171351%2fhahn-banach-theorem-implying-existence-of-a-nonzero-linear-functional-taking-0-i%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu