spinor representation Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)What are spinors mathematically?Fundamental chiral representations of SU(2)Two-Component Spinor Index PlacementSpinor bundle of a spin Manifold is a Clifford bundleUnderstanding of Spin(n) and SO(n)Spinor chiral transformation by $psi to gamma^5 psi$Why do the $Gamma$ matrices behave like vectors and tensors in the spinor representation of SO groups?Can we 'build' spinor structure not only from a Riemann Manifold but 'extract it' also from another algebraic structures?Spinors - Groups and Double Cover of Lorentz Group

Why are vacuum tubes still used in amateur radios?

Do wooden building fires get hotter than 600°C?

How to run automated tests after each commit?

What is an "asse" in Elizabethan English?

Putting class ranking in CV, but against dept guidelines

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

Co-worker has annoying ringtone

How to identify unknown coordinate type and convert to lat/lon?

What order were files/directories output in dir?

How many morphisms from 1 to 1+1 can there be?

How do living politicians protect their readily obtainable signatures from misuse?

Is there any word for a place full of confusion?

Deconstruction is ambiguous

preposition before coffee

The Nth Gryphon Number

What is the meaning of 'breadth' in breadth first search?

Intuitive explanation of the rank-nullity theorem

How would a mousetrap for use in space work?

What do you call the main part of a joke?

Does the Mueller report show a conspiracy between Russia and the Trump Campaign?

Is there hard evidence that the grant peer review system performs significantly better than random?

One-one communication

Why can't I install Tomboy in Ubuntu Mate 19.04?

Can a new player join a group only when a new campaign starts?



spinor representation



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)What are spinors mathematically?Fundamental chiral representations of SU(2)Two-Component Spinor Index PlacementSpinor bundle of a spin Manifold is a Clifford bundleUnderstanding of Spin(n) and SO(n)Spinor chiral transformation by $psi to gamma^5 psi$Why do the $Gamma$ matrices behave like vectors and tensors in the spinor representation of SO groups?Can we 'build' spinor structure not only from a Riemann Manifold but 'extract it' also from another algebraic structures?Spinors - Groups and Double Cover of Lorentz Group










1












$begingroup$


I am trying to study Special unitary group of order 2 and some textbooks mention objects transform under special unitary group are called Spinors then How can we represent a spinor using matrix ?










share|cite|improve this question









$endgroup$











  • $begingroup$
    In quantum mechanics spinors are represented as column vectors. The thing that makes them spinors is the way the components of the column vector mix when a coordinate rotation occurs.
    $endgroup$
    – Spencer
    Mar 20 at 17:54










  • $begingroup$
    So according to you for SU (2) Spinor is a 2 by 1 matrix , isn't it ? @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:21










  • $begingroup$
    Yes a spinor can be represented that way.
    $endgroup$
    – Spencer
    Mar 20 at 18:34










  • $begingroup$
    Can spinors be 2 by 2 under SU (2) @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:44










  • $begingroup$
    Did I manage to answer your question?
    $endgroup$
    – Spencer
    Mar 20 at 20:09















1












$begingroup$


I am trying to study Special unitary group of order 2 and some textbooks mention objects transform under special unitary group are called Spinors then How can we represent a spinor using matrix ?










share|cite|improve this question









$endgroup$











  • $begingroup$
    In quantum mechanics spinors are represented as column vectors. The thing that makes them spinors is the way the components of the column vector mix when a coordinate rotation occurs.
    $endgroup$
    – Spencer
    Mar 20 at 17:54










  • $begingroup$
    So according to you for SU (2) Spinor is a 2 by 1 matrix , isn't it ? @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:21










  • $begingroup$
    Yes a spinor can be represented that way.
    $endgroup$
    – Spencer
    Mar 20 at 18:34










  • $begingroup$
    Can spinors be 2 by 2 under SU (2) @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:44










  • $begingroup$
    Did I manage to answer your question?
    $endgroup$
    – Spencer
    Mar 20 at 20:09













1












1








1





$begingroup$


I am trying to study Special unitary group of order 2 and some textbooks mention objects transform under special unitary group are called Spinors then How can we represent a spinor using matrix ?










share|cite|improve this question









$endgroup$




I am trying to study Special unitary group of order 2 and some textbooks mention objects transform under special unitary group are called Spinors then How can we represent a spinor using matrix ?







group-theory lie-groups spin-geometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 20 at 17:24









robinrobin

234




234











  • $begingroup$
    In quantum mechanics spinors are represented as column vectors. The thing that makes them spinors is the way the components of the column vector mix when a coordinate rotation occurs.
    $endgroup$
    – Spencer
    Mar 20 at 17:54










  • $begingroup$
    So according to you for SU (2) Spinor is a 2 by 1 matrix , isn't it ? @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:21










  • $begingroup$
    Yes a spinor can be represented that way.
    $endgroup$
    – Spencer
    Mar 20 at 18:34










  • $begingroup$
    Can spinors be 2 by 2 under SU (2) @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:44










  • $begingroup$
    Did I manage to answer your question?
    $endgroup$
    – Spencer
    Mar 20 at 20:09
















  • $begingroup$
    In quantum mechanics spinors are represented as column vectors. The thing that makes them spinors is the way the components of the column vector mix when a coordinate rotation occurs.
    $endgroup$
    – Spencer
    Mar 20 at 17:54










  • $begingroup$
    So according to you for SU (2) Spinor is a 2 by 1 matrix , isn't it ? @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:21










  • $begingroup$
    Yes a spinor can be represented that way.
    $endgroup$
    – Spencer
    Mar 20 at 18:34










  • $begingroup$
    Can spinors be 2 by 2 under SU (2) @ Spencer
    $endgroup$
    – robin
    Mar 20 at 18:44










  • $begingroup$
    Did I manage to answer your question?
    $endgroup$
    – Spencer
    Mar 20 at 20:09















$begingroup$
In quantum mechanics spinors are represented as column vectors. The thing that makes them spinors is the way the components of the column vector mix when a coordinate rotation occurs.
$endgroup$
– Spencer
Mar 20 at 17:54




$begingroup$
In quantum mechanics spinors are represented as column vectors. The thing that makes them spinors is the way the components of the column vector mix when a coordinate rotation occurs.
$endgroup$
– Spencer
Mar 20 at 17:54












$begingroup$
So according to you for SU (2) Spinor is a 2 by 1 matrix , isn't it ? @ Spencer
$endgroup$
– robin
Mar 20 at 18:21




$begingroup$
So according to you for SU (2) Spinor is a 2 by 1 matrix , isn't it ? @ Spencer
$endgroup$
– robin
Mar 20 at 18:21












$begingroup$
Yes a spinor can be represented that way.
$endgroup$
– Spencer
Mar 20 at 18:34




$begingroup$
Yes a spinor can be represented that way.
$endgroup$
– Spencer
Mar 20 at 18:34












$begingroup$
Can spinors be 2 by 2 under SU (2) @ Spencer
$endgroup$
– robin
Mar 20 at 18:44




$begingroup$
Can spinors be 2 by 2 under SU (2) @ Spencer
$endgroup$
– robin
Mar 20 at 18:44












$begingroup$
Did I manage to answer your question?
$endgroup$
– Spencer
Mar 20 at 20:09




$begingroup$
Did I manage to answer your question?
$endgroup$
– Spencer
Mar 20 at 20:09










1 Answer
1






active

oldest

votes


















1












$begingroup$

$SU(2)$ can be defined as the group of determinant-$1$ transformations which leaves,



$$ | z_1 |^2 + |z_2|^2 = 1,$$



invariant.



The transformations themselves act on the two complex numbers $z_1$ and $z_2$. It is common to represent $z_1$ and $z_2$ as the two components of a complex column vector,



$$ left(beginarray z_1 \ z_2 endarrayright),$$



but there is nothing to prevent us from representing these complex numbers in a $2times 2$ matrix.



In particular the actual elements of $SU(2)$ can be thought of as spinors. From wikipedia we have the group elements of $SU(2)$ can be represented as



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



notice that this matrix is determined by only two complex numbers which satisfy the same normalization as the $z_1$ and $z_2$ indicated previously. In fact this matrix is completely determined by the spinor in its first column.




To see that the representation is really faithful let us compare the action of group elements when they act on our spinors.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 \ z_2endarray right) = left( beginarray alpha z_1 - barbeta z_1 \ beta z_1 + baralpha z_2endarrayright)$$



Now consider



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -alpha barz_2 - barbeta barz_1 \ beta z_1 + baralpha z_2 & -beta barz_2 + baralpha barz_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & overline -baralpha z_2 - beta z_1 \ beta z_1 + baralpha z_2 & overline-barbeta z_2 + alpha z_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( baralpha z_2 + beta z_1right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( beta z_1 + baralpha z_2 right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



You can see that the $z_1$ and $z_2$ are mixed in the same way for both transformations.




It doesn't cause any difficulty if we allow the quadratic form $|z_1|^2+|z_2|^2$ to equal any real number.



The transformation matrices would remain the same.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



The spinors would still be expressible as $2times 2$ matrices.



$$ left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    "SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
    $endgroup$
    – robin
    Mar 21 at 13:28











  • $begingroup$
    Can we represent a vector defined over the field of real numbers in spinor notation
    $endgroup$
    – robin
    Mar 21 at 14:01










  • $begingroup$
    With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
    $endgroup$
    – Spencer
    Mar 21 at 15:21











  • $begingroup$
    With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
    $endgroup$
    – Spencer
    Mar 21 at 15:22






  • 1




    $begingroup$
    @Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
    $endgroup$
    – iSeeker
    Mar 25 at 15:10











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155748%2fspinor-representation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$SU(2)$ can be defined as the group of determinant-$1$ transformations which leaves,



$$ | z_1 |^2 + |z_2|^2 = 1,$$



invariant.



The transformations themselves act on the two complex numbers $z_1$ and $z_2$. It is common to represent $z_1$ and $z_2$ as the two components of a complex column vector,



$$ left(beginarray z_1 \ z_2 endarrayright),$$



but there is nothing to prevent us from representing these complex numbers in a $2times 2$ matrix.



In particular the actual elements of $SU(2)$ can be thought of as spinors. From wikipedia we have the group elements of $SU(2)$ can be represented as



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



notice that this matrix is determined by only two complex numbers which satisfy the same normalization as the $z_1$ and $z_2$ indicated previously. In fact this matrix is completely determined by the spinor in its first column.




To see that the representation is really faithful let us compare the action of group elements when they act on our spinors.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 \ z_2endarray right) = left( beginarray alpha z_1 - barbeta z_1 \ beta z_1 + baralpha z_2endarrayright)$$



Now consider



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -alpha barz_2 - barbeta barz_1 \ beta z_1 + baralpha z_2 & -beta barz_2 + baralpha barz_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & overline -baralpha z_2 - beta z_1 \ beta z_1 + baralpha z_2 & overline-barbeta z_2 + alpha z_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( baralpha z_2 + beta z_1right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( beta z_1 + baralpha z_2 right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



You can see that the $z_1$ and $z_2$ are mixed in the same way for both transformations.




It doesn't cause any difficulty if we allow the quadratic form $|z_1|^2+|z_2|^2$ to equal any real number.



The transformation matrices would remain the same.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



The spinors would still be expressible as $2times 2$ matrices.



$$ left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    "SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
    $endgroup$
    – robin
    Mar 21 at 13:28











  • $begingroup$
    Can we represent a vector defined over the field of real numbers in spinor notation
    $endgroup$
    – robin
    Mar 21 at 14:01










  • $begingroup$
    With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
    $endgroup$
    – Spencer
    Mar 21 at 15:21











  • $begingroup$
    With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
    $endgroup$
    – Spencer
    Mar 21 at 15:22






  • 1




    $begingroup$
    @Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
    $endgroup$
    – iSeeker
    Mar 25 at 15:10















1












$begingroup$

$SU(2)$ can be defined as the group of determinant-$1$ transformations which leaves,



$$ | z_1 |^2 + |z_2|^2 = 1,$$



invariant.



The transformations themselves act on the two complex numbers $z_1$ and $z_2$. It is common to represent $z_1$ and $z_2$ as the two components of a complex column vector,



$$ left(beginarray z_1 \ z_2 endarrayright),$$



but there is nothing to prevent us from representing these complex numbers in a $2times 2$ matrix.



In particular the actual elements of $SU(2)$ can be thought of as spinors. From wikipedia we have the group elements of $SU(2)$ can be represented as



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



notice that this matrix is determined by only two complex numbers which satisfy the same normalization as the $z_1$ and $z_2$ indicated previously. In fact this matrix is completely determined by the spinor in its first column.




To see that the representation is really faithful let us compare the action of group elements when they act on our spinors.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 \ z_2endarray right) = left( beginarray alpha z_1 - barbeta z_1 \ beta z_1 + baralpha z_2endarrayright)$$



Now consider



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -alpha barz_2 - barbeta barz_1 \ beta z_1 + baralpha z_2 & -beta barz_2 + baralpha barz_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & overline -baralpha z_2 - beta z_1 \ beta z_1 + baralpha z_2 & overline-barbeta z_2 + alpha z_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( baralpha z_2 + beta z_1right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( beta z_1 + baralpha z_2 right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



You can see that the $z_1$ and $z_2$ are mixed in the same way for both transformations.




It doesn't cause any difficulty if we allow the quadratic form $|z_1|^2+|z_2|^2$ to equal any real number.



The transformation matrices would remain the same.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



The spinors would still be expressible as $2times 2$ matrices.



$$ left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    "SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
    $endgroup$
    – robin
    Mar 21 at 13:28











  • $begingroup$
    Can we represent a vector defined over the field of real numbers in spinor notation
    $endgroup$
    – robin
    Mar 21 at 14:01










  • $begingroup$
    With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
    $endgroup$
    – Spencer
    Mar 21 at 15:21











  • $begingroup$
    With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
    $endgroup$
    – Spencer
    Mar 21 at 15:22






  • 1




    $begingroup$
    @Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
    $endgroup$
    – iSeeker
    Mar 25 at 15:10













1












1








1





$begingroup$

$SU(2)$ can be defined as the group of determinant-$1$ transformations which leaves,



$$ | z_1 |^2 + |z_2|^2 = 1,$$



invariant.



The transformations themselves act on the two complex numbers $z_1$ and $z_2$. It is common to represent $z_1$ and $z_2$ as the two components of a complex column vector,



$$ left(beginarray z_1 \ z_2 endarrayright),$$



but there is nothing to prevent us from representing these complex numbers in a $2times 2$ matrix.



In particular the actual elements of $SU(2)$ can be thought of as spinors. From wikipedia we have the group elements of $SU(2)$ can be represented as



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



notice that this matrix is determined by only two complex numbers which satisfy the same normalization as the $z_1$ and $z_2$ indicated previously. In fact this matrix is completely determined by the spinor in its first column.




To see that the representation is really faithful let us compare the action of group elements when they act on our spinors.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 \ z_2endarray right) = left( beginarray alpha z_1 - barbeta z_1 \ beta z_1 + baralpha z_2endarrayright)$$



Now consider



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -alpha barz_2 - barbeta barz_1 \ beta z_1 + baralpha z_2 & -beta barz_2 + baralpha barz_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & overline -baralpha z_2 - beta z_1 \ beta z_1 + baralpha z_2 & overline-barbeta z_2 + alpha z_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( baralpha z_2 + beta z_1right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( beta z_1 + baralpha z_2 right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



You can see that the $z_1$ and $z_2$ are mixed in the same way for both transformations.




It doesn't cause any difficulty if we allow the quadratic form $|z_1|^2+|z_2|^2$ to equal any real number.



The transformation matrices would remain the same.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



The spinors would still be expressible as $2times 2$ matrices.



$$ left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$






share|cite|improve this answer











$endgroup$



$SU(2)$ can be defined as the group of determinant-$1$ transformations which leaves,



$$ | z_1 |^2 + |z_2|^2 = 1,$$



invariant.



The transformations themselves act on the two complex numbers $z_1$ and $z_2$. It is common to represent $z_1$ and $z_2$ as the two components of a complex column vector,



$$ left(beginarray z_1 \ z_2 endarrayright),$$



but there is nothing to prevent us from representing these complex numbers in a $2times 2$ matrix.



In particular the actual elements of $SU(2)$ can be thought of as spinors. From wikipedia we have the group elements of $SU(2)$ can be represented as



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



notice that this matrix is determined by only two complex numbers which satisfy the same normalization as the $z_1$ and $z_2$ indicated previously. In fact this matrix is completely determined by the spinor in its first column.




To see that the representation is really faithful let us compare the action of group elements when they act on our spinors.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 \ z_2endarray right) = left( beginarray alpha z_1 - barbeta z_1 \ beta z_1 + baralpha z_2endarrayright)$$



Now consider



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -alpha barz_2 - barbeta barz_1 \ beta z_1 + baralpha z_2 & -beta barz_2 + baralpha barz_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & overline -baralpha z_2 - beta z_1 \ beta z_1 + baralpha z_2 & overline-barbeta z_2 + alpha z_1 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( baralpha z_2 + beta z_1right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



$$ = left( beginarray alpha z_1 - barbeta z_2 & -overlineleft( beta z_1 + baralpha z_2 right) \ beta z_1 + baralpha z_2 & overline alpha z_1 -barbeta z_2 endarrayright) $$



You can see that the $z_1$ and $z_2$ are mixed in the same way for both transformations.




It doesn't cause any difficulty if we allow the quadratic form $|z_1|^2+|z_2|^2$ to equal any real number.



The transformation matrices would remain the same.



$$ left( beginarray alpha & - barbeta \ beta & baralpha endarrayright) qquad |alpha|^2 + |beta|^2 = 1,$$



The spinors would still be expressible as $2times 2$ matrices.



$$ left( beginarray z_1 & - barz_2 \ z_2 & barz_1 endarrayright)$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 1 at 23:48

























answered Mar 20 at 19:32









SpencerSpencer

8,74012156




8,74012156











  • $begingroup$
    "SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
    $endgroup$
    – robin
    Mar 21 at 13:28











  • $begingroup$
    Can we represent a vector defined over the field of real numbers in spinor notation
    $endgroup$
    – robin
    Mar 21 at 14:01










  • $begingroup$
    With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
    $endgroup$
    – Spencer
    Mar 21 at 15:21











  • $begingroup$
    With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
    $endgroup$
    – Spencer
    Mar 21 at 15:22






  • 1




    $begingroup$
    @Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
    $endgroup$
    – iSeeker
    Mar 25 at 15:10
















  • $begingroup$
    "SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
    $endgroup$
    – robin
    Mar 21 at 13:28











  • $begingroup$
    Can we represent a vector defined over the field of real numbers in spinor notation
    $endgroup$
    – robin
    Mar 21 at 14:01










  • $begingroup$
    With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
    $endgroup$
    – Spencer
    Mar 21 at 15:21











  • $begingroup$
    With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
    $endgroup$
    – Spencer
    Mar 21 at 15:22






  • 1




    $begingroup$
    @Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
    $endgroup$
    – iSeeker
    Mar 25 at 15:10















$begingroup$
"SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
$endgroup$
– robin
Mar 21 at 13:28





$begingroup$
"SU(2) can be defined as the group of determinant-1 transformations which leaves, |z1|2+|z2|2=1, invariant.", But i read in a book that matrix which preserve quadratic form ( |z1|2+|z2|2 ) invarient is called SU (2) Can you please clarify me @ Spencer
$endgroup$
– robin
Mar 21 at 13:28













$begingroup$
Can we represent a vector defined over the field of real numbers in spinor notation
$endgroup$
– robin
Mar 21 at 14:01




$begingroup$
Can we represent a vector defined over the field of real numbers in spinor notation
$endgroup$
– robin
Mar 21 at 14:01












$begingroup$
With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
$endgroup$
– Spencer
Mar 21 at 15:21





$begingroup$
With regards to the definition of SU(2). It doesn't change the matrices, but it does change your space of spinors slightly. I will amend my answer to accommodate this.
$endgroup$
– Spencer
Mar 21 at 15:21













$begingroup$
With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
$endgroup$
– Spencer
Mar 21 at 15:22




$begingroup$
With regards to real numbers, you certainly can define spinors that way. If a spinors is described by a pair of complex numbers, then it can be described by 4 real numbers. Your SU(2) matrices would have to be 4x4 in that case.
$endgroup$
– Spencer
Mar 21 at 15:22




1




1




$begingroup$
@Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
$endgroup$
– iSeeker
Mar 25 at 15:10




$begingroup$
@Robin You can use the Pauli matrices to represent a vector in 2x2 form - see the section "Pauli vector" in en.wikipedia.org/wiki/Pauli_matrices
$endgroup$
– iSeeker
Mar 25 at 15:10

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155748%2fspinor-representation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu