Value of the angle in isosceles triangle. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Why are there isosceles triangles?Proving that the volume of a pyramid is one-third that of its corresponding prism.How to find coordinates of 3rd vertex of a right angled triangle when everything else is known?Calculate the angle from the given points coordinates.Geometry: Finding the sides of the triangle with base and altitude givenArea of an isosceles triangle where the tangents of some angles are in geometric progressionCalculate height of triangle given angle and baseHow to calculate the height of a triangle without using vector cross productThree circles in isosceles trianglecyclic quadrilateral inside an isosceles right triangle

How does the math work when buying airline miles?

What is best way to wire a ceiling receptacle in this situation?

Prove that BD bisects angle ABC

How were pictures turned from film to a big picture in a picture frame before digital scanning?

What makes a man succeed?

What is an "asse" in Elizabethan English?

Significance of Cersei's obsession with elephants?

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

Is CEO the "profession" with the most psychopaths?

Did any compiler fully use 80-bit floating point?

Putting class ranking in CV, but against dept guidelines

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

Co-worker has annoying ringtone

Is there hard evidence that the grant peer review system performs significantly better than random?

Sum letters are not two different

Maximum summed subsequences with non-adjacent items

How did Fremen produce and carry enough thumpers to use Sandworms as de facto Ubers?

Would it be easier to apply for a UK visa if there is a host family to sponsor for you in going there?

How many time has Arya actually used Needle?

Time evolution of a Gaussian wave packet, why convert to k-space?

If the probability of a dog barking one or more times in a given hour is 84%, then what is the probability of a dog barking in 30 minutes?

What does Turing mean by this statement?

What is the chair depicted in Cesare Maccari's 1889 painting "Cicerone denuncia Catilina"?

How do I find out the mythology and history of my Fortress?



Value of the angle in isosceles triangle.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Why are there isosceles triangles?Proving that the volume of a pyramid is one-third that of its corresponding prism.How to find coordinates of 3rd vertex of a right angled triangle when everything else is known?Calculate the angle from the given points coordinates.Geometry: Finding the sides of the triangle with base and altitude givenArea of an isosceles triangle where the tangents of some angles are in geometric progressionCalculate height of triangle given angle and baseHow to calculate the height of a triangle without using vector cross productThree circles in isosceles trianglecyclic quadrilateral inside an isosceles right triangle










0












$begingroup$


I try to find a way to calculate value of one of the isosceles triangle angles when I have given values of its height h = 200 and base x = 200. Values of those can vary depend on the condition, so I need an universal solution. I'll be very grateful for your help.



enter image description here










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    I try to find a way to calculate value of one of the isosceles triangle angles when I have given values of its height h = 200 and base x = 200. Values of those can vary depend on the condition, so I need an universal solution. I'll be very grateful for your help.



    enter image description here










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      I try to find a way to calculate value of one of the isosceles triangle angles when I have given values of its height h = 200 and base x = 200. Values of those can vary depend on the condition, so I need an universal solution. I'll be very grateful for your help.



      enter image description here










      share|cite|improve this question









      $endgroup$




      I try to find a way to calculate value of one of the isosceles triangle angles when I have given values of its height h = 200 and base x = 200. Values of those can vary depend on the condition, so I need an universal solution. I'll be very grateful for your help.



      enter image description here







      trigonometry triangles






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 16 '14 at 0:58









      bluevoxelbluevoxel

      150110




      150110




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          If you have a computer, you can say that



          a = atan2(x/2, h)


          Alternatively, you can use the simpler form



          a = arctan(x/(2h))



          If you type this into google, for particular values of $x$ and $h$, you'll get the answer you want. For instance, searching for



          atan(100/200) in degrees


          returned the answer



          26.5650512 degrees


          The query



          atan(200/(2*200)) in degrees


          produced the same thing.




          A bit more detail.



          Computing sine, cosine, and tangent isn't as easy as square root, but it's not insanely hard. It turns out that if you know $tan(a)$ and $tan(b)$ you can use "addition formulas" to compute $tan(a pm b)$ and $tan(a/2)$. Starting from one known value, like
          $tan(45^deg) = 1$, you can compute many other values, enough to build a pretty complete table, and then fill in by interpolating. This takes time and energy, but that's life. Once you have a table of tangents, you can swap the columns to give you "inverse tangent" -- a function that says "what angle has this tangent?" That's called "arctan".



          In fact, you can build an arctan table using addition rules as well, which is a bit more direct. Proving the addition laws? That's what trigonometry is all about.



          It turns out that $arctan(x)$ can be expressed as a polynomial in $x$...but one with infinitely many terms. Fortunately, for small $x$, most of the terms are very small, so you can get away with evaluating just the first few (i.e., the larger) terms without making much error. This is in fact what the Java Math library's authors do, albeit in a somewhat more sophisticated way. The proof that arctan can be written as a polynomial comes up in calculus, under the general heading of "Approximation by Polynomials", or more specifically, "Taylor Series". Textbooks have multiple chapters about these, so I can't explain it all here, of course. Wish I could, but...






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:10










          • $begingroup$
            See details added in question.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:12










          • $begingroup$
            Cool! Thank you very much. Time to go back to the maths' basics :)
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:28


















          0












          $begingroup$

          Using trigonometry, $a=arctan(100/200)$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I believe this should be $arctan(100/200)$.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:02










          • $begingroup$
            @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
            $endgroup$
            – Suzu Hirose
            Nov 16 '14 at 1:22











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1023591%2fvalue-of-the-angle-in-isosceles-triangle%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          If you have a computer, you can say that



          a = atan2(x/2, h)


          Alternatively, you can use the simpler form



          a = arctan(x/(2h))



          If you type this into google, for particular values of $x$ and $h$, you'll get the answer you want. For instance, searching for



          atan(100/200) in degrees


          returned the answer



          26.5650512 degrees


          The query



          atan(200/(2*200)) in degrees


          produced the same thing.




          A bit more detail.



          Computing sine, cosine, and tangent isn't as easy as square root, but it's not insanely hard. It turns out that if you know $tan(a)$ and $tan(b)$ you can use "addition formulas" to compute $tan(a pm b)$ and $tan(a/2)$. Starting from one known value, like
          $tan(45^deg) = 1$, you can compute many other values, enough to build a pretty complete table, and then fill in by interpolating. This takes time and energy, but that's life. Once you have a table of tangents, you can swap the columns to give you "inverse tangent" -- a function that says "what angle has this tangent?" That's called "arctan".



          In fact, you can build an arctan table using addition rules as well, which is a bit more direct. Proving the addition laws? That's what trigonometry is all about.



          It turns out that $arctan(x)$ can be expressed as a polynomial in $x$...but one with infinitely many terms. Fortunately, for small $x$, most of the terms are very small, so you can get away with evaluating just the first few (i.e., the larger) terms without making much error. This is in fact what the Java Math library's authors do, albeit in a somewhat more sophisticated way. The proof that arctan can be written as a polynomial comes up in calculus, under the general heading of "Approximation by Polynomials", or more specifically, "Taylor Series". Textbooks have multiple chapters about these, so I can't explain it all here, of course. Wish I could, but...






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:10










          • $begingroup$
            See details added in question.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:12










          • $begingroup$
            Cool! Thank you very much. Time to go back to the maths' basics :)
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:28















          2












          $begingroup$

          If you have a computer, you can say that



          a = atan2(x/2, h)


          Alternatively, you can use the simpler form



          a = arctan(x/(2h))



          If you type this into google, for particular values of $x$ and $h$, you'll get the answer you want. For instance, searching for



          atan(100/200) in degrees


          returned the answer



          26.5650512 degrees


          The query



          atan(200/(2*200)) in degrees


          produced the same thing.




          A bit more detail.



          Computing sine, cosine, and tangent isn't as easy as square root, but it's not insanely hard. It turns out that if you know $tan(a)$ and $tan(b)$ you can use "addition formulas" to compute $tan(a pm b)$ and $tan(a/2)$. Starting from one known value, like
          $tan(45^deg) = 1$, you can compute many other values, enough to build a pretty complete table, and then fill in by interpolating. This takes time and energy, but that's life. Once you have a table of tangents, you can swap the columns to give you "inverse tangent" -- a function that says "what angle has this tangent?" That's called "arctan".



          In fact, you can build an arctan table using addition rules as well, which is a bit more direct. Proving the addition laws? That's what trigonometry is all about.



          It turns out that $arctan(x)$ can be expressed as a polynomial in $x$...but one with infinitely many terms. Fortunately, for small $x$, most of the terms are very small, so you can get away with evaluating just the first few (i.e., the larger) terms without making much error. This is in fact what the Java Math library's authors do, albeit in a somewhat more sophisticated way. The proof that arctan can be written as a polynomial comes up in calculus, under the general heading of "Approximation by Polynomials", or more specifically, "Taylor Series". Textbooks have multiple chapters about these, so I can't explain it all here, of course. Wish I could, but...






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:10










          • $begingroup$
            See details added in question.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:12










          • $begingroup$
            Cool! Thank you very much. Time to go back to the maths' basics :)
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:28













          2












          2








          2





          $begingroup$

          If you have a computer, you can say that



          a = atan2(x/2, h)


          Alternatively, you can use the simpler form



          a = arctan(x/(2h))



          If you type this into google, for particular values of $x$ and $h$, you'll get the answer you want. For instance, searching for



          atan(100/200) in degrees


          returned the answer



          26.5650512 degrees


          The query



          atan(200/(2*200)) in degrees


          produced the same thing.




          A bit more detail.



          Computing sine, cosine, and tangent isn't as easy as square root, but it's not insanely hard. It turns out that if you know $tan(a)$ and $tan(b)$ you can use "addition formulas" to compute $tan(a pm b)$ and $tan(a/2)$. Starting from one known value, like
          $tan(45^deg) = 1$, you can compute many other values, enough to build a pretty complete table, and then fill in by interpolating. This takes time and energy, but that's life. Once you have a table of tangents, you can swap the columns to give you "inverse tangent" -- a function that says "what angle has this tangent?" That's called "arctan".



          In fact, you can build an arctan table using addition rules as well, which is a bit more direct. Proving the addition laws? That's what trigonometry is all about.



          It turns out that $arctan(x)$ can be expressed as a polynomial in $x$...but one with infinitely many terms. Fortunately, for small $x$, most of the terms are very small, so you can get away with evaluating just the first few (i.e., the larger) terms without making much error. This is in fact what the Java Math library's authors do, albeit in a somewhat more sophisticated way. The proof that arctan can be written as a polynomial comes up in calculus, under the general heading of "Approximation by Polynomials", or more specifically, "Taylor Series". Textbooks have multiple chapters about these, so I can't explain it all here, of course. Wish I could, but...






          share|cite|improve this answer











          $endgroup$



          If you have a computer, you can say that



          a = atan2(x/2, h)


          Alternatively, you can use the simpler form



          a = arctan(x/(2h))



          If you type this into google, for particular values of $x$ and $h$, you'll get the answer you want. For instance, searching for



          atan(100/200) in degrees


          returned the answer



          26.5650512 degrees


          The query



          atan(200/(2*200)) in degrees


          produced the same thing.




          A bit more detail.



          Computing sine, cosine, and tangent isn't as easy as square root, but it's not insanely hard. It turns out that if you know $tan(a)$ and $tan(b)$ you can use "addition formulas" to compute $tan(a pm b)$ and $tan(a/2)$. Starting from one known value, like
          $tan(45^deg) = 1$, you can compute many other values, enough to build a pretty complete table, and then fill in by interpolating. This takes time and energy, but that's life. Once you have a table of tangents, you can swap the columns to give you "inverse tangent" -- a function that says "what angle has this tangent?" That's called "arctan".



          In fact, you can build an arctan table using addition rules as well, which is a bit more direct. Proving the addition laws? That's what trigonometry is all about.



          It turns out that $arctan(x)$ can be expressed as a polynomial in $x$...but one with infinitely many terms. Fortunately, for small $x$, most of the terms are very small, so you can get away with evaluating just the first few (i.e., the larger) terms without making much error. This is in fact what the Java Math library's authors do, albeit in a somewhat more sophisticated way. The proof that arctan can be written as a polynomial comes up in calculus, under the general heading of "Approximation by Polynomials", or more specifically, "Taylor Series". Textbooks have multiple chapters about these, so I can't explain it all here, of course. Wish I could, but...







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 16 '14 at 1:19

























          answered Nov 16 '14 at 1:01









          John HughesJohn Hughes

          65.5k24292




          65.5k24292











          • $begingroup$
            To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:10










          • $begingroup$
            See details added in question.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:12










          • $begingroup$
            Cool! Thank you very much. Time to go back to the maths' basics :)
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:28
















          • $begingroup$
            To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:10










          • $begingroup$
            See details added in question.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:12










          • $begingroup$
            Cool! Thank you very much. Time to go back to the maths' basics :)
            $endgroup$
            – bluevoxel
            Nov 16 '14 at 1:28















          $begingroup$
          To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
          $endgroup$
          – bluevoxel
          Nov 16 '14 at 1:10




          $begingroup$
          To be honest I asked this question in the context of Java, but I would like to know how this function is expressed mathematically. I would like to understand its basis.
          $endgroup$
          – bluevoxel
          Nov 16 '14 at 1:10












          $begingroup$
          See details added in question.
          $endgroup$
          – John Hughes
          Nov 16 '14 at 1:12




          $begingroup$
          See details added in question.
          $endgroup$
          – John Hughes
          Nov 16 '14 at 1:12












          $begingroup$
          Cool! Thank you very much. Time to go back to the maths' basics :)
          $endgroup$
          – bluevoxel
          Nov 16 '14 at 1:28




          $begingroup$
          Cool! Thank you very much. Time to go back to the maths' basics :)
          $endgroup$
          – bluevoxel
          Nov 16 '14 at 1:28











          0












          $begingroup$

          Using trigonometry, $a=arctan(100/200)$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I believe this should be $arctan(100/200)$.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:02










          • $begingroup$
            @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
            $endgroup$
            – Suzu Hirose
            Nov 16 '14 at 1:22















          0












          $begingroup$

          Using trigonometry, $a=arctan(100/200)$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I believe this should be $arctan(100/200)$.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:02










          • $begingroup$
            @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
            $endgroup$
            – Suzu Hirose
            Nov 16 '14 at 1:22













          0












          0








          0





          $begingroup$

          Using trigonometry, $a=arctan(100/200)$.






          share|cite|improve this answer











          $endgroup$



          Using trigonometry, $a=arctan(100/200)$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 16 '14 at 1:21

























          answered Nov 16 '14 at 1:01









          Suzu HiroseSuzu Hirose

          4,18021228




          4,18021228











          • $begingroup$
            I believe this should be $arctan(100/200)$.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:02










          • $begingroup$
            @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
            $endgroup$
            – Suzu Hirose
            Nov 16 '14 at 1:22
















          • $begingroup$
            I believe this should be $arctan(100/200)$.
            $endgroup$
            – John Hughes
            Nov 16 '14 at 1:02










          • $begingroup$
            @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
            $endgroup$
            – Suzu Hirose
            Nov 16 '14 at 1:22















          $begingroup$
          I believe this should be $arctan(100/200)$.
          $endgroup$
          – John Hughes
          Nov 16 '14 at 1:02




          $begingroup$
          I believe this should be $arctan(100/200)$.
          $endgroup$
          – John Hughes
          Nov 16 '14 at 1:02












          $begingroup$
          @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
          $endgroup$
          – Suzu Hirose
          Nov 16 '14 at 1:22




          $begingroup$
          @JohnHughes - thanks. I've undeleted this since your post only discusses computing the number.
          $endgroup$
          – Suzu Hirose
          Nov 16 '14 at 1:22

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1023591%2fvalue-of-the-angle-in-isosceles-triangle%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu