Number of solutions to the equation $x_1 + x_2 + ldots + x_n = k$ when $0 leq x_i leq m$ and $m + 1 leq k leq 2m + 1$Number of integer solutions if $x_1leq x_2leq x_3leq cdotsleq x_rleq k$Number of integer solutions of $x_1+x_2+⋯+x_n=m$ when $x_i$ can be negative, simpler solutionNumber of solutions of $x_1 + x_2 + x_3 + x_4 = 14$ such that $x_i le 6$The Number of Increasing Vectors $(x_1,…,x_k)$ Satisfying $1 leq x_i leq n$ and $x_1 < x_2 <…<x_k$Find the number of integer solutions to $x_1+x_2+x_3+x_4= 30$ where $0leq x_n <10$ for $1leq n leq 4$Product of $x_1,x_2, ldots, x_n$Find the number of integer solutions of $x_1 + x_2 + x_3 = 16$, with $x_i geq 0$, $x_1$ odd, $x_2$ even, $x_3$ prime.How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 leq 35$ in which all the $x_i$ are non-negative integers?Product of $x_1, x_2, ldots, x_n$ on circleHow to find a number of solutions for $x_1+x_2+ldots+x_n=r$ where $r$ is divisible by 3 and for a given $l$ and $r$ such that $lleq x_i leq r$?

Test whether all array elements are factors of a number

The use of multiple foreign keys on same column in SQL Server

Maximum likelihood parameters deviate from posterior distributions

Why do falling prices hurt debtors?

Test if tikzmark exists on same page

Writing rule stating superpower from different root cause is bad writing

Can divisibility rules for digits be generalized to sum of digits

"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"

What is the offset in a seaplane's hull?

Why not use SQL instead of GraphQL?

Is it unprofessional to ask if a job posting on GlassDoor is real?

What does "Puller Prush Person" mean?

TGV timetables / schedules?

Why are electrically insulating heatsinks so rare? Is it just cost?

What's the output of a record cartridge playing an out-of-speed record

Can I make popcorn with any corn?

Modeling an IPv4 Address

How to write a macro that is braces sensitive?

Today is the Center

Collect Fourier series terms

Smoothness of finite-dimensional functional calculus

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

Why does Kotter return in Welcome Back Kotter?

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)



Number of solutions to the equation $x_1 + x_2 + ldots + x_n = k$ when $0 leq x_i leq m$ and $m + 1 leq k leq 2m + 1$


Number of integer solutions if $x_1leq x_2leq x_3leq cdotsleq x_rleq k$Number of integer solutions of $x_1+x_2+⋯+x_n=m$ when $x_i$ can be negative, simpler solutionNumber of solutions of $x_1 + x_2 + x_3 + x_4 = 14$ such that $x_i le 6$The Number of Increasing Vectors $(x_1,…,x_k)$ Satisfying $1 leq x_i leq n$ and $x_1 < x_2 <…<x_k$Find the number of integer solutions to $x_1+x_2+x_3+x_4= 30$ where $0leq x_n <10$ for $1leq n leq 4$Product of $x_1,x_2, ldots, x_n$Find the number of integer solutions of $x_1 + x_2 + x_3 = 16$, with $x_i geq 0$, $x_1$ odd, $x_2$ even, $x_3$ prime.How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 leq 35$ in which all the $x_i$ are non-negative integers?Product of $x_1, x_2, ldots, x_n$ on circleHow to find a number of solutions for $x_1+x_2+ldots+x_n=r$ where $r$ is divisible by 3 and for a given $l$ and $r$ such that $lleq x_i leq r$?













3












$begingroup$


The problem:



Find the number of solutions to the equation: $x_1+x_2+...+x_n=k$ when $0leq x_ileq m$ and $m+1leq kleq 2m+1$.



The answer in the book is $n+k-1choose k-nchoose 1n+k-(m+1)-1choose k-(m+1)$.



I understand that the idea is taking all solutions, a number equals to $n+k-1choose k$ and then subtracting "bad" solutions, and that $nchoose 1$ is there because we can't have more than a single $i$ so $x_igeq m+1$, what I can't understand is the last part. I think it works only if the "bad" element equals exactly $m+1$, but what if it equals $m+2$? That way it doesn't seem correct anymore.



Thanks in advance.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    The problem:



    Find the number of solutions to the equation: $x_1+x_2+...+x_n=k$ when $0leq x_ileq m$ and $m+1leq kleq 2m+1$.



    The answer in the book is $n+k-1choose k-nchoose 1n+k-(m+1)-1choose k-(m+1)$.



    I understand that the idea is taking all solutions, a number equals to $n+k-1choose k$ and then subtracting "bad" solutions, and that $nchoose 1$ is there because we can't have more than a single $i$ so $x_igeq m+1$, what I can't understand is the last part. I think it works only if the "bad" element equals exactly $m+1$, but what if it equals $m+2$? That way it doesn't seem correct anymore.



    Thanks in advance.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      The problem:



      Find the number of solutions to the equation: $x_1+x_2+...+x_n=k$ when $0leq x_ileq m$ and $m+1leq kleq 2m+1$.



      The answer in the book is $n+k-1choose k-nchoose 1n+k-(m+1)-1choose k-(m+1)$.



      I understand that the idea is taking all solutions, a number equals to $n+k-1choose k$ and then subtracting "bad" solutions, and that $nchoose 1$ is there because we can't have more than a single $i$ so $x_igeq m+1$, what I can't understand is the last part. I think it works only if the "bad" element equals exactly $m+1$, but what if it equals $m+2$? That way it doesn't seem correct anymore.



      Thanks in advance.










      share|cite|improve this question











      $endgroup$




      The problem:



      Find the number of solutions to the equation: $x_1+x_2+...+x_n=k$ when $0leq x_ileq m$ and $m+1leq kleq 2m+1$.



      The answer in the book is $n+k-1choose k-nchoose 1n+k-(m+1)-1choose k-(m+1)$.



      I understand that the idea is taking all solutions, a number equals to $n+k-1choose k$ and then subtracting "bad" solutions, and that $nchoose 1$ is there because we can't have more than a single $i$ so $x_igeq m+1$, what I can't understand is the last part. I think it works only if the "bad" element equals exactly $m+1$, but what if it equals $m+2$? That way it doesn't seem correct anymore.



      Thanks in advance.







      combinatorics combinations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 29 at 15:46









      N. F. Taussig

      45k103358




      45k103358










      asked Mar 29 at 12:53









      איתן לויאיתן לוי

      795




      795




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          A solution of the equation in the nonnegative integers
          $$x_1 + x_2 + ldots + x_n = k tag1$$
          corresponds to the placement of $n - 1$ addition signs in a row of $k$ ones. For instance, if $n = 4$ and $k = 10$,
          $$1 1 + + 1 1 1 1 1 + 1 1 1$$
          corresponds to the solution $x_1 = 2$, $x_2 = 0$, $x_3 = 5$, $x_4 = 3$. The number of such solutions is
          $$binomk + n - 1n - 1 = binomk + n - 1k$$
          since we must choose which $n - 1$ of the $k + n - 1$ positions required for $k$ ones and $n - 1$ addition signs will be filled with addition signs or, equivalently, which $k$ of the $k + n - 1$ positions will be filled with ones.



          We wish to solve equation 1 in the nonnegative integers not larger than $m$ when $m + 1 leq k leq 2m + 1$. Thus, we must subtract those solutions in which a variable exceeds $m$. At most one variable may exceed $m$ since $2(m + 1) = 2m + 2 > 2m + 1$.



          We may choose a variable that exceeds $m$ in $n$ ways. Suppose that variable is $x_1$. Then $x_1' = x_1 - (m + 1)$ is a nonnegative integer. Substituting $x_1' + m + 1$ into equation 1 equation yields
          beginalign*
          x_1' + m + 1 + x_2 + ldots + x_n & = k\
          x_1' + x_2 + ldots + x_n & = k - (m + 1) tag2
          endalign*

          Equation 2 is an equation in the nonnegative integers with
          $$binomk - (m + 1) + n - 1n - 1 = binomk - (m + 1) + n - 1k - (m + 1)$$
          solutions. Hence, there are
          $$binomn1binomk - (m + 1) + n - 1n - 1 = binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
          solutions in which one of the variables exceeds $m$.



          Thus, there are
          $$binomk + n - 1k - binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
          admissible solutions.



          Notice that in equation 2, $m + 1 leq x_1 leq 2m + 1 implies 0 leq x_1' leq m$. It does not imply that $x_1 = m + 1$.



          Let's compare this with what would happen if $x_1 = m + 1$. Then we would have
          beginalign*
          m + 1 + x_2 + ldots + x_n & = k\
          x_2 + ldots + x_n & = k - (m + 1)
          endalign*

          which is an equation in the nonnegative integers with
          $$binomk - (m + 1) + (n - 1) - 1(n - 1) - 1 = binomk - (m + 1) + (n - 1) - 1k - (m + 1)$$
          solutions, which is a smaller number as we would expect.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167115%2fnumber-of-solutions-to-the-equation-x-1-x-2-ldots-x-n-k-when-0-leq%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            A solution of the equation in the nonnegative integers
            $$x_1 + x_2 + ldots + x_n = k tag1$$
            corresponds to the placement of $n - 1$ addition signs in a row of $k$ ones. For instance, if $n = 4$ and $k = 10$,
            $$1 1 + + 1 1 1 1 1 + 1 1 1$$
            corresponds to the solution $x_1 = 2$, $x_2 = 0$, $x_3 = 5$, $x_4 = 3$. The number of such solutions is
            $$binomk + n - 1n - 1 = binomk + n - 1k$$
            since we must choose which $n - 1$ of the $k + n - 1$ positions required for $k$ ones and $n - 1$ addition signs will be filled with addition signs or, equivalently, which $k$ of the $k + n - 1$ positions will be filled with ones.



            We wish to solve equation 1 in the nonnegative integers not larger than $m$ when $m + 1 leq k leq 2m + 1$. Thus, we must subtract those solutions in which a variable exceeds $m$. At most one variable may exceed $m$ since $2(m + 1) = 2m + 2 > 2m + 1$.



            We may choose a variable that exceeds $m$ in $n$ ways. Suppose that variable is $x_1$. Then $x_1' = x_1 - (m + 1)$ is a nonnegative integer. Substituting $x_1' + m + 1$ into equation 1 equation yields
            beginalign*
            x_1' + m + 1 + x_2 + ldots + x_n & = k\
            x_1' + x_2 + ldots + x_n & = k - (m + 1) tag2
            endalign*

            Equation 2 is an equation in the nonnegative integers with
            $$binomk - (m + 1) + n - 1n - 1 = binomk - (m + 1) + n - 1k - (m + 1)$$
            solutions. Hence, there are
            $$binomn1binomk - (m + 1) + n - 1n - 1 = binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
            solutions in which one of the variables exceeds $m$.



            Thus, there are
            $$binomk + n - 1k - binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
            admissible solutions.



            Notice that in equation 2, $m + 1 leq x_1 leq 2m + 1 implies 0 leq x_1' leq m$. It does not imply that $x_1 = m + 1$.



            Let's compare this with what would happen if $x_1 = m + 1$. Then we would have
            beginalign*
            m + 1 + x_2 + ldots + x_n & = k\
            x_2 + ldots + x_n & = k - (m + 1)
            endalign*

            which is an equation in the nonnegative integers with
            $$binomk - (m + 1) + (n - 1) - 1(n - 1) - 1 = binomk - (m + 1) + (n - 1) - 1k - (m + 1)$$
            solutions, which is a smaller number as we would expect.






            share|cite|improve this answer











            $endgroup$

















              3












              $begingroup$

              A solution of the equation in the nonnegative integers
              $$x_1 + x_2 + ldots + x_n = k tag1$$
              corresponds to the placement of $n - 1$ addition signs in a row of $k$ ones. For instance, if $n = 4$ and $k = 10$,
              $$1 1 + + 1 1 1 1 1 + 1 1 1$$
              corresponds to the solution $x_1 = 2$, $x_2 = 0$, $x_3 = 5$, $x_4 = 3$. The number of such solutions is
              $$binomk + n - 1n - 1 = binomk + n - 1k$$
              since we must choose which $n - 1$ of the $k + n - 1$ positions required for $k$ ones and $n - 1$ addition signs will be filled with addition signs or, equivalently, which $k$ of the $k + n - 1$ positions will be filled with ones.



              We wish to solve equation 1 in the nonnegative integers not larger than $m$ when $m + 1 leq k leq 2m + 1$. Thus, we must subtract those solutions in which a variable exceeds $m$. At most one variable may exceed $m$ since $2(m + 1) = 2m + 2 > 2m + 1$.



              We may choose a variable that exceeds $m$ in $n$ ways. Suppose that variable is $x_1$. Then $x_1' = x_1 - (m + 1)$ is a nonnegative integer. Substituting $x_1' + m + 1$ into equation 1 equation yields
              beginalign*
              x_1' + m + 1 + x_2 + ldots + x_n & = k\
              x_1' + x_2 + ldots + x_n & = k - (m + 1) tag2
              endalign*

              Equation 2 is an equation in the nonnegative integers with
              $$binomk - (m + 1) + n - 1n - 1 = binomk - (m + 1) + n - 1k - (m + 1)$$
              solutions. Hence, there are
              $$binomn1binomk - (m + 1) + n - 1n - 1 = binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
              solutions in which one of the variables exceeds $m$.



              Thus, there are
              $$binomk + n - 1k - binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
              admissible solutions.



              Notice that in equation 2, $m + 1 leq x_1 leq 2m + 1 implies 0 leq x_1' leq m$. It does not imply that $x_1 = m + 1$.



              Let's compare this with what would happen if $x_1 = m + 1$. Then we would have
              beginalign*
              m + 1 + x_2 + ldots + x_n & = k\
              x_2 + ldots + x_n & = k - (m + 1)
              endalign*

              which is an equation in the nonnegative integers with
              $$binomk - (m + 1) + (n - 1) - 1(n - 1) - 1 = binomk - (m + 1) + (n - 1) - 1k - (m + 1)$$
              solutions, which is a smaller number as we would expect.






              share|cite|improve this answer











              $endgroup$















                3












                3








                3





                $begingroup$

                A solution of the equation in the nonnegative integers
                $$x_1 + x_2 + ldots + x_n = k tag1$$
                corresponds to the placement of $n - 1$ addition signs in a row of $k$ ones. For instance, if $n = 4$ and $k = 10$,
                $$1 1 + + 1 1 1 1 1 + 1 1 1$$
                corresponds to the solution $x_1 = 2$, $x_2 = 0$, $x_3 = 5$, $x_4 = 3$. The number of such solutions is
                $$binomk + n - 1n - 1 = binomk + n - 1k$$
                since we must choose which $n - 1$ of the $k + n - 1$ positions required for $k$ ones and $n - 1$ addition signs will be filled with addition signs or, equivalently, which $k$ of the $k + n - 1$ positions will be filled with ones.



                We wish to solve equation 1 in the nonnegative integers not larger than $m$ when $m + 1 leq k leq 2m + 1$. Thus, we must subtract those solutions in which a variable exceeds $m$. At most one variable may exceed $m$ since $2(m + 1) = 2m + 2 > 2m + 1$.



                We may choose a variable that exceeds $m$ in $n$ ways. Suppose that variable is $x_1$. Then $x_1' = x_1 - (m + 1)$ is a nonnegative integer. Substituting $x_1' + m + 1$ into equation 1 equation yields
                beginalign*
                x_1' + m + 1 + x_2 + ldots + x_n & = k\
                x_1' + x_2 + ldots + x_n & = k - (m + 1) tag2
                endalign*

                Equation 2 is an equation in the nonnegative integers with
                $$binomk - (m + 1) + n - 1n - 1 = binomk - (m + 1) + n - 1k - (m + 1)$$
                solutions. Hence, there are
                $$binomn1binomk - (m + 1) + n - 1n - 1 = binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
                solutions in which one of the variables exceeds $m$.



                Thus, there are
                $$binomk + n - 1k - binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
                admissible solutions.



                Notice that in equation 2, $m + 1 leq x_1 leq 2m + 1 implies 0 leq x_1' leq m$. It does not imply that $x_1 = m + 1$.



                Let's compare this with what would happen if $x_1 = m + 1$. Then we would have
                beginalign*
                m + 1 + x_2 + ldots + x_n & = k\
                x_2 + ldots + x_n & = k - (m + 1)
                endalign*

                which is an equation in the nonnegative integers with
                $$binomk - (m + 1) + (n - 1) - 1(n - 1) - 1 = binomk - (m + 1) + (n - 1) - 1k - (m + 1)$$
                solutions, which is a smaller number as we would expect.






                share|cite|improve this answer











                $endgroup$



                A solution of the equation in the nonnegative integers
                $$x_1 + x_2 + ldots + x_n = k tag1$$
                corresponds to the placement of $n - 1$ addition signs in a row of $k$ ones. For instance, if $n = 4$ and $k = 10$,
                $$1 1 + + 1 1 1 1 1 + 1 1 1$$
                corresponds to the solution $x_1 = 2$, $x_2 = 0$, $x_3 = 5$, $x_4 = 3$. The number of such solutions is
                $$binomk + n - 1n - 1 = binomk + n - 1k$$
                since we must choose which $n - 1$ of the $k + n - 1$ positions required for $k$ ones and $n - 1$ addition signs will be filled with addition signs or, equivalently, which $k$ of the $k + n - 1$ positions will be filled with ones.



                We wish to solve equation 1 in the nonnegative integers not larger than $m$ when $m + 1 leq k leq 2m + 1$. Thus, we must subtract those solutions in which a variable exceeds $m$. At most one variable may exceed $m$ since $2(m + 1) = 2m + 2 > 2m + 1$.



                We may choose a variable that exceeds $m$ in $n$ ways. Suppose that variable is $x_1$. Then $x_1' = x_1 - (m + 1)$ is a nonnegative integer. Substituting $x_1' + m + 1$ into equation 1 equation yields
                beginalign*
                x_1' + m + 1 + x_2 + ldots + x_n & = k\
                x_1' + x_2 + ldots + x_n & = k - (m + 1) tag2
                endalign*

                Equation 2 is an equation in the nonnegative integers with
                $$binomk - (m + 1) + n - 1n - 1 = binomk - (m + 1) + n - 1k - (m + 1)$$
                solutions. Hence, there are
                $$binomn1binomk - (m + 1) + n - 1n - 1 = binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
                solutions in which one of the variables exceeds $m$.



                Thus, there are
                $$binomk + n - 1k - binomn1binomk - (m + 1) + n - 1k - (m + 1)$$
                admissible solutions.



                Notice that in equation 2, $m + 1 leq x_1 leq 2m + 1 implies 0 leq x_1' leq m$. It does not imply that $x_1 = m + 1$.



                Let's compare this with what would happen if $x_1 = m + 1$. Then we would have
                beginalign*
                m + 1 + x_2 + ldots + x_n & = k\
                x_2 + ldots + x_n & = k - (m + 1)
                endalign*

                which is an equation in the nonnegative integers with
                $$binomk - (m + 1) + (n - 1) - 1(n - 1) - 1 = binomk - (m + 1) + (n - 1) - 1k - (m + 1)$$
                solutions, which is a smaller number as we would expect.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 30 at 11:06

























                answered Mar 29 at 15:44









                N. F. TaussigN. F. Taussig

                45k103358




                45k103358



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167115%2fnumber-of-solutions-to-the-equation-x-1-x-2-ldots-x-n-k-when-0-leq%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu