In a finite field, number of squares not contained in smaller subfield.Show the norm map is surjectiveFind the number of non-zero squares in the field $Zp$Understanding examples of subfield and prime subfield of a finite fieldEmbed finite field in algebraic closed fieldPrimitive element of finite fieldComputing Galois group of polynomial over finite fieldQuestion on Squares in Finite FieldsAffine subspace of finite field intersecting prime subfieldHow many squares in $C_i$ over finite fieldsdistribution of squares in a finite fieldCountable ordered subfield of any Ordered Field

Test whether all array elements are factors of a number

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

To string or not to string

Theorems that impeded progress

Why was the small council so happy for Tyrion to become the Master of Coin?

What typically incentivizes a professor to change jobs to a lower ranking university?

Can divisibility rules for digits be generalized to sum of digits

Arthur Somervell: 1000 Exercises - Meaning of this notation

How does one intimidate enemies without having the capacity for violence?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Modeling an IPv4 Address

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Why, historically, did Gödel think CH was false?

What would happen to a modern skyscraper if it rains micro blackholes?

How do I create uniquely male characters?

Problem of parity - Can we draw a closed path made up of 20 line segments...

Can I ask the recruiters in my resume to put the reason why I am rejected?

Why Is Death Allowed In the Matrix?

can i play a electric guitar through a bass amp?

Font hinting is lost in Chrome-like browsers (for some languages )

Python: next in for loop

How much RAM could one put in a typical 80386 setup?

What is the word for reserving something for yourself before others do?

Do I have a twin with permutated remainders?



In a finite field, number of squares not contained in smaller subfield.


Show the norm map is surjectiveFind the number of non-zero squares in the field $Zp$Understanding examples of subfield and prime subfield of a finite fieldEmbed finite field in algebraic closed fieldPrimitive element of finite fieldComputing Galois group of polynomial over finite fieldQuestion on Squares in Finite FieldsAffine subspace of finite field intersecting prime subfieldHow many squares in $C_i$ over finite fieldsdistribution of squares in a finite fieldCountable ordered subfield of any Ordered Field













3












$begingroup$


Let $mathbbF_q$ be the finite field of order $q$, where $q$ is odd. Now, Let $S$ be the set of elements $x$ in $mathbbF_q^n^*$, such that $x$ doesnot belong to any smaller subfield(containing $mathbbF_q$) of $mathbbF_q^n$. Let $S^2= x^2 $. I want to find out $|Scap S^2|$.



I have made some calculations and found out the answer, but I am not sure whether it is perfectly correct, or whether there is easier way to see this!



Here is my idea: $|S|=sum_nmu(d)q^n/d$. Here $mu$ denotes the Mobius Function. Now I divide this in two case.



Case 1: Suppose $n$ is odd.



Then observe that $ain S implies a^2in S$. This is because there is no intermediate extension of even order. Now, since exactly two element of $S$ gives the same squared element, we have $|Scap S^2|=frac2= frac12sum_nmu(d)q^n/d$.



Case 2: Suppose $n$ is even



In this case: $ain S implies texteither a^2in S text or a^2in mathbbF_q^n/2^*$. Now, there are exactly $fracq^n/2-12$ non-squares in $mathbbF_q^n/2^*$. These non-squares are squares of elements in $S$. So, in this way there are $q^n/2-1$ elements in $S$, whose squares lie in $mathbbF_q^n/2^*$. Hence there are $|S|- (q^n/2-1)$ number of elements in $S$ whose squares are in $S$. Hence $|Scap S^2|=frac12[|S|-(q^n/2-1)]= frac12Big[sum_nmu(d)q^n/d - (q^n/2-1)Big]$.



This completes the solution. Please let me know whether this is a fine solution, or am I missing something! Let me know, if one can approach this problem any easier way.



Thank you!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    When you say "smaller subfield", do you mean "smaller field extension of $mathbbF_q$" or literally "smaller subfield"? Because that makes a difference.
    $endgroup$
    – darij grinberg
    Mar 27 at 17:57










  • $begingroup$
    no literally smaller subfield!! Will smaller subfield extension make sense in the question? Because not all finite fields are contained in $mathbbF_q^n$. $mathbbF_q^d$ is contained in $mathbbF_q^n$ iff $dmid n$.
    $endgroup$
    – Riju
    Mar 28 at 6:34






  • 1




    $begingroup$
    If you mean literally "smaller subfield", then your computation of $left|Sright|$ doesn't work already (because your Möbius inversion only accounts for the subfields that contain $mathbbF_q$).
    $endgroup$
    – darij grinberg
    Mar 28 at 6:53










  • $begingroup$
    Ok I know sww what you are saying! I am taking subfields containing $mathbbF_q$.
    $endgroup$
    – Riju
    Mar 28 at 7:21






  • 2




    $begingroup$
    Care to edit your question to correct it?
    $endgroup$
    – darij grinberg
    Mar 29 at 3:51















3












$begingroup$


Let $mathbbF_q$ be the finite field of order $q$, where $q$ is odd. Now, Let $S$ be the set of elements $x$ in $mathbbF_q^n^*$, such that $x$ doesnot belong to any smaller subfield(containing $mathbbF_q$) of $mathbbF_q^n$. Let $S^2= x^2 $. I want to find out $|Scap S^2|$.



I have made some calculations and found out the answer, but I am not sure whether it is perfectly correct, or whether there is easier way to see this!



Here is my idea: $|S|=sum_nmu(d)q^n/d$. Here $mu$ denotes the Mobius Function. Now I divide this in two case.



Case 1: Suppose $n$ is odd.



Then observe that $ain S implies a^2in S$. This is because there is no intermediate extension of even order. Now, since exactly two element of $S$ gives the same squared element, we have $|Scap S^2|=frac2= frac12sum_nmu(d)q^n/d$.



Case 2: Suppose $n$ is even



In this case: $ain S implies texteither a^2in S text or a^2in mathbbF_q^n/2^*$. Now, there are exactly $fracq^n/2-12$ non-squares in $mathbbF_q^n/2^*$. These non-squares are squares of elements in $S$. So, in this way there are $q^n/2-1$ elements in $S$, whose squares lie in $mathbbF_q^n/2^*$. Hence there are $|S|- (q^n/2-1)$ number of elements in $S$ whose squares are in $S$. Hence $|Scap S^2|=frac12[|S|-(q^n/2-1)]= frac12Big[sum_nmu(d)q^n/d - (q^n/2-1)Big]$.



This completes the solution. Please let me know whether this is a fine solution, or am I missing something! Let me know, if one can approach this problem any easier way.



Thank you!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    When you say "smaller subfield", do you mean "smaller field extension of $mathbbF_q$" or literally "smaller subfield"? Because that makes a difference.
    $endgroup$
    – darij grinberg
    Mar 27 at 17:57










  • $begingroup$
    no literally smaller subfield!! Will smaller subfield extension make sense in the question? Because not all finite fields are contained in $mathbbF_q^n$. $mathbbF_q^d$ is contained in $mathbbF_q^n$ iff $dmid n$.
    $endgroup$
    – Riju
    Mar 28 at 6:34






  • 1




    $begingroup$
    If you mean literally "smaller subfield", then your computation of $left|Sright|$ doesn't work already (because your Möbius inversion only accounts for the subfields that contain $mathbbF_q$).
    $endgroup$
    – darij grinberg
    Mar 28 at 6:53










  • $begingroup$
    Ok I know sww what you are saying! I am taking subfields containing $mathbbF_q$.
    $endgroup$
    – Riju
    Mar 28 at 7:21






  • 2




    $begingroup$
    Care to edit your question to correct it?
    $endgroup$
    – darij grinberg
    Mar 29 at 3:51













3












3








3


2



$begingroup$


Let $mathbbF_q$ be the finite field of order $q$, where $q$ is odd. Now, Let $S$ be the set of elements $x$ in $mathbbF_q^n^*$, such that $x$ doesnot belong to any smaller subfield(containing $mathbbF_q$) of $mathbbF_q^n$. Let $S^2= x^2 $. I want to find out $|Scap S^2|$.



I have made some calculations and found out the answer, but I am not sure whether it is perfectly correct, or whether there is easier way to see this!



Here is my idea: $|S|=sum_nmu(d)q^n/d$. Here $mu$ denotes the Mobius Function. Now I divide this in two case.



Case 1: Suppose $n$ is odd.



Then observe that $ain S implies a^2in S$. This is because there is no intermediate extension of even order. Now, since exactly two element of $S$ gives the same squared element, we have $|Scap S^2|=frac2= frac12sum_nmu(d)q^n/d$.



Case 2: Suppose $n$ is even



In this case: $ain S implies texteither a^2in S text or a^2in mathbbF_q^n/2^*$. Now, there are exactly $fracq^n/2-12$ non-squares in $mathbbF_q^n/2^*$. These non-squares are squares of elements in $S$. So, in this way there are $q^n/2-1$ elements in $S$, whose squares lie in $mathbbF_q^n/2^*$. Hence there are $|S|- (q^n/2-1)$ number of elements in $S$ whose squares are in $S$. Hence $|Scap S^2|=frac12[|S|-(q^n/2-1)]= frac12Big[sum_nmu(d)q^n/d - (q^n/2-1)Big]$.



This completes the solution. Please let me know whether this is a fine solution, or am I missing something! Let me know, if one can approach this problem any easier way.



Thank you!










share|cite|improve this question











$endgroup$




Let $mathbbF_q$ be the finite field of order $q$, where $q$ is odd. Now, Let $S$ be the set of elements $x$ in $mathbbF_q^n^*$, such that $x$ doesnot belong to any smaller subfield(containing $mathbbF_q$) of $mathbbF_q^n$. Let $S^2= x^2 $. I want to find out $|Scap S^2|$.



I have made some calculations and found out the answer, but I am not sure whether it is perfectly correct, or whether there is easier way to see this!



Here is my idea: $|S|=sum_nmu(d)q^n/d$. Here $mu$ denotes the Mobius Function. Now I divide this in two case.



Case 1: Suppose $n$ is odd.



Then observe that $ain S implies a^2in S$. This is because there is no intermediate extension of even order. Now, since exactly two element of $S$ gives the same squared element, we have $|Scap S^2|=frac2= frac12sum_nmu(d)q^n/d$.



Case 2: Suppose $n$ is even



In this case: $ain S implies texteither a^2in S text or a^2in mathbbF_q^n/2^*$. Now, there are exactly $fracq^n/2-12$ non-squares in $mathbbF_q^n/2^*$. These non-squares are squares of elements in $S$. So, in this way there are $q^n/2-1$ elements in $S$, whose squares lie in $mathbbF_q^n/2^*$. Hence there are $|S|- (q^n/2-1)$ number of elements in $S$ whose squares are in $S$. Hence $|Scap S^2|=frac12[|S|-(q^n/2-1)]= frac12Big[sum_nmu(d)q^n/d - (q^n/2-1)Big]$.



This completes the solution. Please let me know whether this is a fine solution, or am I missing something! Let me know, if one can approach this problem any easier way.



Thank you!







abstract-algebra combinatorics field-theory galois-theory finite-fields






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 29 at 15:38









hardmath

29.3k953101




29.3k953101










asked Mar 26 at 14:51









RijuRiju

2,294414




2,294414







  • 2




    $begingroup$
    When you say "smaller subfield", do you mean "smaller field extension of $mathbbF_q$" or literally "smaller subfield"? Because that makes a difference.
    $endgroup$
    – darij grinberg
    Mar 27 at 17:57










  • $begingroup$
    no literally smaller subfield!! Will smaller subfield extension make sense in the question? Because not all finite fields are contained in $mathbbF_q^n$. $mathbbF_q^d$ is contained in $mathbbF_q^n$ iff $dmid n$.
    $endgroup$
    – Riju
    Mar 28 at 6:34






  • 1




    $begingroup$
    If you mean literally "smaller subfield", then your computation of $left|Sright|$ doesn't work already (because your Möbius inversion only accounts for the subfields that contain $mathbbF_q$).
    $endgroup$
    – darij grinberg
    Mar 28 at 6:53










  • $begingroup$
    Ok I know sww what you are saying! I am taking subfields containing $mathbbF_q$.
    $endgroup$
    – Riju
    Mar 28 at 7:21






  • 2




    $begingroup$
    Care to edit your question to correct it?
    $endgroup$
    – darij grinberg
    Mar 29 at 3:51












  • 2




    $begingroup$
    When you say "smaller subfield", do you mean "smaller field extension of $mathbbF_q$" or literally "smaller subfield"? Because that makes a difference.
    $endgroup$
    – darij grinberg
    Mar 27 at 17:57










  • $begingroup$
    no literally smaller subfield!! Will smaller subfield extension make sense in the question? Because not all finite fields are contained in $mathbbF_q^n$. $mathbbF_q^d$ is contained in $mathbbF_q^n$ iff $dmid n$.
    $endgroup$
    – Riju
    Mar 28 at 6:34






  • 1




    $begingroup$
    If you mean literally "smaller subfield", then your computation of $left|Sright|$ doesn't work already (because your Möbius inversion only accounts for the subfields that contain $mathbbF_q$).
    $endgroup$
    – darij grinberg
    Mar 28 at 6:53










  • $begingroup$
    Ok I know sww what you are saying! I am taking subfields containing $mathbbF_q$.
    $endgroup$
    – Riju
    Mar 28 at 7:21






  • 2




    $begingroup$
    Care to edit your question to correct it?
    $endgroup$
    – darij grinberg
    Mar 29 at 3:51







2




2




$begingroup$
When you say "smaller subfield", do you mean "smaller field extension of $mathbbF_q$" or literally "smaller subfield"? Because that makes a difference.
$endgroup$
– darij grinberg
Mar 27 at 17:57




$begingroup$
When you say "smaller subfield", do you mean "smaller field extension of $mathbbF_q$" or literally "smaller subfield"? Because that makes a difference.
$endgroup$
– darij grinberg
Mar 27 at 17:57












$begingroup$
no literally smaller subfield!! Will smaller subfield extension make sense in the question? Because not all finite fields are contained in $mathbbF_q^n$. $mathbbF_q^d$ is contained in $mathbbF_q^n$ iff $dmid n$.
$endgroup$
– Riju
Mar 28 at 6:34




$begingroup$
no literally smaller subfield!! Will smaller subfield extension make sense in the question? Because not all finite fields are contained in $mathbbF_q^n$. $mathbbF_q^d$ is contained in $mathbbF_q^n$ iff $dmid n$.
$endgroup$
– Riju
Mar 28 at 6:34




1




1




$begingroup$
If you mean literally "smaller subfield", then your computation of $left|Sright|$ doesn't work already (because your Möbius inversion only accounts for the subfields that contain $mathbbF_q$).
$endgroup$
– darij grinberg
Mar 28 at 6:53




$begingroup$
If you mean literally "smaller subfield", then your computation of $left|Sright|$ doesn't work already (because your Möbius inversion only accounts for the subfields that contain $mathbbF_q$).
$endgroup$
– darij grinberg
Mar 28 at 6:53












$begingroup$
Ok I know sww what you are saying! I am taking subfields containing $mathbbF_q$.
$endgroup$
– Riju
Mar 28 at 7:21




$begingroup$
Ok I know sww what you are saying! I am taking subfields containing $mathbbF_q$.
$endgroup$
– Riju
Mar 28 at 7:21




2




2




$begingroup$
Care to edit your question to correct it?
$endgroup$
– darij grinberg
Mar 29 at 3:51




$begingroup$
Care to edit your question to correct it?
$endgroup$
– darij grinberg
Mar 29 at 3:51










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163283%2fin-a-finite-field-number-of-squares-not-contained-in-smaller-subfield%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163283%2fin-a-finite-field-number-of-squares-not-contained-in-smaller-subfield%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu