even number - binomialProperty of Binomial Coefficientappling the binomial theoremBinomial Expansion.A binomial random number generating algorithm that works when $ n times p $ is very smallq-binomial IdentityAsymptotic bound for products of even binomial coefficientsEvaluating sum of binomial coefficientsSummation of binomial coefficients up to $r$ terms.Binomial summationsHow to prove binomial coefficient $ 2^n choose k $ is even number?

Font hinting is lost in Chrome-like browsers (for some languages )

Is it important to consider tone, melody, and musical form while writing a song?

How could an uplifted falcon's brain work?

Is it unprofessional to ask if a job posting on GlassDoor is real?

How to write a macro that is braces sensitive?

Have astronauts in space suits ever taken selfies? If so, how?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

To string or not to string

Why do falling prices hurt debtors?

Test if tikzmark exists on same page

How can I make my BBEG immortal short of making them a Lich or Vampire?

The use of multiple foreign keys on same column in SQL Server

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Why are electrically insulating heatsinks so rare? Is it just cost?

Languages that we cannot (dis)prove to be Context-Free

What typically incentivizes a professor to change jobs to a lower ranking university?

Can I ask the recruiters in my resume to put the reason why I am rejected?

Why not use SQL instead of GraphQL?

Finding angle with pure Geometry.

What's the output of a record cartridge playing an out-of-speed record

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?



even number - binomial


Property of Binomial Coefficientappling the binomial theoremBinomial Expansion.A binomial random number generating algorithm that works when $ n times p $ is very smallq-binomial IdentityAsymptotic bound for products of even binomial coefficientsEvaluating sum of binomial coefficientsSummation of binomial coefficients up to $r$ terms.Binomial summationsHow to prove binomial coefficient $ 2^n choose k $ is even number?













-1












$begingroup$


$$(1+sqrt 2)^n+(1-sqrt2)^n$$
if $$ n in N $$
It's always an even number.



I tried to solve for the binomial, but I could not, any idea to be able to proceed
$$(a+b)^n=sum_k=0^nn choose k a^n-kb^k$$










share|cite|improve this question









$endgroup$











  • $begingroup$
    Proceed by induction
    $endgroup$
    – Jakobian
    Mar 29 at 15:11










  • $begingroup$
    I have to do without induction, help
    $endgroup$
    – Monica
    Mar 29 at 15:14















-1












$begingroup$


$$(1+sqrt 2)^n+(1-sqrt2)^n$$
if $$ n in N $$
It's always an even number.



I tried to solve for the binomial, but I could not, any idea to be able to proceed
$$(a+b)^n=sum_k=0^nn choose k a^n-kb^k$$










share|cite|improve this question









$endgroup$











  • $begingroup$
    Proceed by induction
    $endgroup$
    – Jakobian
    Mar 29 at 15:11










  • $begingroup$
    I have to do without induction, help
    $endgroup$
    – Monica
    Mar 29 at 15:14













-1












-1








-1





$begingroup$


$$(1+sqrt 2)^n+(1-sqrt2)^n$$
if $$ n in N $$
It's always an even number.



I tried to solve for the binomial, but I could not, any idea to be able to proceed
$$(a+b)^n=sum_k=0^nn choose k a^n-kb^k$$










share|cite|improve this question









$endgroup$




$$(1+sqrt 2)^n+(1-sqrt2)^n$$
if $$ n in N $$
It's always an even number.



I tried to solve for the binomial, but I could not, any idea to be able to proceed
$$(a+b)^n=sum_k=0^nn choose k a^n-kb^k$$







binomial-coefficients






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 29 at 15:08









MonicaMonica

215




215











  • $begingroup$
    Proceed by induction
    $endgroup$
    – Jakobian
    Mar 29 at 15:11










  • $begingroup$
    I have to do without induction, help
    $endgroup$
    – Monica
    Mar 29 at 15:14
















  • $begingroup$
    Proceed by induction
    $endgroup$
    – Jakobian
    Mar 29 at 15:11










  • $begingroup$
    I have to do without induction, help
    $endgroup$
    – Monica
    Mar 29 at 15:14















$begingroup$
Proceed by induction
$endgroup$
– Jakobian
Mar 29 at 15:11




$begingroup$
Proceed by induction
$endgroup$
– Jakobian
Mar 29 at 15:11












$begingroup$
I have to do without induction, help
$endgroup$
– Monica
Mar 29 at 15:14




$begingroup$
I have to do without induction, help
$endgroup$
– Monica
Mar 29 at 15:14










3 Answers
3






active

oldest

votes


















2












$begingroup$

Applying the binomial expansion you gave,



$$(1+sqrt2)^n=sum_k=0^nn choose k sqrt2^k$$



$$(1-sqrt2)^n=sum_k=0^nn choose k (-sqrt2)^k$$



In their sum, terms of odd $k$ cancel, and terms of even $k$ are duplicated, so the sum is $$2sum_j=0^lfloorfrac n2rfloorn choose 2j sqrt2^2j,$$



which is clearly an even integer, because it's $2$ times an integer --



binomial coefficients and even non-negative powers of $sqrt2$ are integers -- no induction needed.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
    $endgroup$
    – J. W. Tanner
    Mar 29 at 15:42


















1












$begingroup$

For all $n in mathbbN$, let $u_n = left( 1 +sqrt2 right)^n + left(1- sqrt2 right)^n$.



First, for all $n$, one has $u_n+2=2u_n+1 + u_n$ : indeed
$$u_n+2 = left( 1 +sqrt2 right)^n+2 + left(1- sqrt2 right)^n+2 = left( 1 +sqrt2 right)^2left( 1 +sqrt2 right)^n + left( 1 -sqrt2 right)^2left(1- sqrt2 right)^n $$



$$= (1+2(sqrt2+1))left( 1 +sqrt2 right)^n + left( 1 -2(sqrt2+1) right)left(1- sqrt2 right)^n$$



$$= left( 1 +sqrt2 right)^n + 2 left( 1 +sqrt2 right)^n+1 + left(1- sqrt2 right)^n - 2left(1- sqrt2 right)^n+1$$



So you get
$$u_n+2=2u_n+1 + u_n$$



Now, a small induction shows you that $(u_n)$ is even for each $n$.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    You can restore the difference equation with roots $1-sqrt2$ and $1+sqrt2$:
    $$x^2-2x-1=0.$$
    Hence:
    $$a_n=2a_n-1+a_n-2, a_1=2,a_2=6,$$
    which has a solution:
    $$a_n=(1-sqrt2)^n+(1+sqrtn)^n.$$
    Obviously, it has all terms even.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      You must have meant $sqrt 2$ where you wrote $sqrt n$
      $endgroup$
      – J. W. Tanner
      Mar 29 at 19:27










    • $begingroup$
      J.W.Tanner, yes, indeed, let your note be erratum.
      $endgroup$
      – farruhota
      Mar 29 at 19:59











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167229%2feven-number-binomial%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Applying the binomial expansion you gave,



    $$(1+sqrt2)^n=sum_k=0^nn choose k sqrt2^k$$



    $$(1-sqrt2)^n=sum_k=0^nn choose k (-sqrt2)^k$$



    In their sum, terms of odd $k$ cancel, and terms of even $k$ are duplicated, so the sum is $$2sum_j=0^lfloorfrac n2rfloorn choose 2j sqrt2^2j,$$



    which is clearly an even integer, because it's $2$ times an integer --



    binomial coefficients and even non-negative powers of $sqrt2$ are integers -- no induction needed.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
      $endgroup$
      – J. W. Tanner
      Mar 29 at 15:42















    2












    $begingroup$

    Applying the binomial expansion you gave,



    $$(1+sqrt2)^n=sum_k=0^nn choose k sqrt2^k$$



    $$(1-sqrt2)^n=sum_k=0^nn choose k (-sqrt2)^k$$



    In their sum, terms of odd $k$ cancel, and terms of even $k$ are duplicated, so the sum is $$2sum_j=0^lfloorfrac n2rfloorn choose 2j sqrt2^2j,$$



    which is clearly an even integer, because it's $2$ times an integer --



    binomial coefficients and even non-negative powers of $sqrt2$ are integers -- no induction needed.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
      $endgroup$
      – J. W. Tanner
      Mar 29 at 15:42













    2












    2








    2





    $begingroup$

    Applying the binomial expansion you gave,



    $$(1+sqrt2)^n=sum_k=0^nn choose k sqrt2^k$$



    $$(1-sqrt2)^n=sum_k=0^nn choose k (-sqrt2)^k$$



    In their sum, terms of odd $k$ cancel, and terms of even $k$ are duplicated, so the sum is $$2sum_j=0^lfloorfrac n2rfloorn choose 2j sqrt2^2j,$$



    which is clearly an even integer, because it's $2$ times an integer --



    binomial coefficients and even non-negative powers of $sqrt2$ are integers -- no induction needed.






    share|cite|improve this answer











    $endgroup$



    Applying the binomial expansion you gave,



    $$(1+sqrt2)^n=sum_k=0^nn choose k sqrt2^k$$



    $$(1-sqrt2)^n=sum_k=0^nn choose k (-sqrt2)^k$$



    In their sum, terms of odd $k$ cancel, and terms of even $k$ are duplicated, so the sum is $$2sum_j=0^lfloorfrac n2rfloorn choose 2j sqrt2^2j,$$



    which is clearly an even integer, because it's $2$ times an integer --



    binomial coefficients and even non-negative powers of $sqrt2$ are integers -- no induction needed.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 31 at 5:08

























    answered Mar 29 at 15:14









    J. W. TannerJ. W. Tanner

    4,4891320




    4,4891320











    • $begingroup$
      I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
      $endgroup$
      – J. W. Tanner
      Mar 29 at 15:42
















    • $begingroup$
      I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
      $endgroup$
      – J. W. Tanner
      Mar 29 at 15:42















    $begingroup$
    I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
    $endgroup$
    – J. W. Tanner
    Mar 29 at 15:42




    $begingroup$
    I used the fact that $(-1)^k=1$ if $k$ is even and $-1$ if $k$ is odd
    $endgroup$
    – J. W. Tanner
    Mar 29 at 15:42











    1












    $begingroup$

    For all $n in mathbbN$, let $u_n = left( 1 +sqrt2 right)^n + left(1- sqrt2 right)^n$.



    First, for all $n$, one has $u_n+2=2u_n+1 + u_n$ : indeed
    $$u_n+2 = left( 1 +sqrt2 right)^n+2 + left(1- sqrt2 right)^n+2 = left( 1 +sqrt2 right)^2left( 1 +sqrt2 right)^n + left( 1 -sqrt2 right)^2left(1- sqrt2 right)^n $$



    $$= (1+2(sqrt2+1))left( 1 +sqrt2 right)^n + left( 1 -2(sqrt2+1) right)left(1- sqrt2 right)^n$$



    $$= left( 1 +sqrt2 right)^n + 2 left( 1 +sqrt2 right)^n+1 + left(1- sqrt2 right)^n - 2left(1- sqrt2 right)^n+1$$



    So you get
    $$u_n+2=2u_n+1 + u_n$$



    Now, a small induction shows you that $(u_n)$ is even for each $n$.






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      For all $n in mathbbN$, let $u_n = left( 1 +sqrt2 right)^n + left(1- sqrt2 right)^n$.



      First, for all $n$, one has $u_n+2=2u_n+1 + u_n$ : indeed
      $$u_n+2 = left( 1 +sqrt2 right)^n+2 + left(1- sqrt2 right)^n+2 = left( 1 +sqrt2 right)^2left( 1 +sqrt2 right)^n + left( 1 -sqrt2 right)^2left(1- sqrt2 right)^n $$



      $$= (1+2(sqrt2+1))left( 1 +sqrt2 right)^n + left( 1 -2(sqrt2+1) right)left(1- sqrt2 right)^n$$



      $$= left( 1 +sqrt2 right)^n + 2 left( 1 +sqrt2 right)^n+1 + left(1- sqrt2 right)^n - 2left(1- sqrt2 right)^n+1$$



      So you get
      $$u_n+2=2u_n+1 + u_n$$



      Now, a small induction shows you that $(u_n)$ is even for each $n$.






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        For all $n in mathbbN$, let $u_n = left( 1 +sqrt2 right)^n + left(1- sqrt2 right)^n$.



        First, for all $n$, one has $u_n+2=2u_n+1 + u_n$ : indeed
        $$u_n+2 = left( 1 +sqrt2 right)^n+2 + left(1- sqrt2 right)^n+2 = left( 1 +sqrt2 right)^2left( 1 +sqrt2 right)^n + left( 1 -sqrt2 right)^2left(1- sqrt2 right)^n $$



        $$= (1+2(sqrt2+1))left( 1 +sqrt2 right)^n + left( 1 -2(sqrt2+1) right)left(1- sqrt2 right)^n$$



        $$= left( 1 +sqrt2 right)^n + 2 left( 1 +sqrt2 right)^n+1 + left(1- sqrt2 right)^n - 2left(1- sqrt2 right)^n+1$$



        So you get
        $$u_n+2=2u_n+1 + u_n$$



        Now, a small induction shows you that $(u_n)$ is even for each $n$.






        share|cite|improve this answer









        $endgroup$



        For all $n in mathbbN$, let $u_n = left( 1 +sqrt2 right)^n + left(1- sqrt2 right)^n$.



        First, for all $n$, one has $u_n+2=2u_n+1 + u_n$ : indeed
        $$u_n+2 = left( 1 +sqrt2 right)^n+2 + left(1- sqrt2 right)^n+2 = left( 1 +sqrt2 right)^2left( 1 +sqrt2 right)^n + left( 1 -sqrt2 right)^2left(1- sqrt2 right)^n $$



        $$= (1+2(sqrt2+1))left( 1 +sqrt2 right)^n + left( 1 -2(sqrt2+1) right)left(1- sqrt2 right)^n$$



        $$= left( 1 +sqrt2 right)^n + 2 left( 1 +sqrt2 right)^n+1 + left(1- sqrt2 right)^n - 2left(1- sqrt2 right)^n+1$$



        So you get
        $$u_n+2=2u_n+1 + u_n$$



        Now, a small induction shows you that $(u_n)$ is even for each $n$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 29 at 15:21









        TheSilverDoeTheSilverDoe

        5,433216




        5,433216





















            0












            $begingroup$

            You can restore the difference equation with roots $1-sqrt2$ and $1+sqrt2$:
            $$x^2-2x-1=0.$$
            Hence:
            $$a_n=2a_n-1+a_n-2, a_1=2,a_2=6,$$
            which has a solution:
            $$a_n=(1-sqrt2)^n+(1+sqrtn)^n.$$
            Obviously, it has all terms even.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              You must have meant $sqrt 2$ where you wrote $sqrt n$
              $endgroup$
              – J. W. Tanner
              Mar 29 at 19:27










            • $begingroup$
              J.W.Tanner, yes, indeed, let your note be erratum.
              $endgroup$
              – farruhota
              Mar 29 at 19:59















            0












            $begingroup$

            You can restore the difference equation with roots $1-sqrt2$ and $1+sqrt2$:
            $$x^2-2x-1=0.$$
            Hence:
            $$a_n=2a_n-1+a_n-2, a_1=2,a_2=6,$$
            which has a solution:
            $$a_n=(1-sqrt2)^n+(1+sqrtn)^n.$$
            Obviously, it has all terms even.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              You must have meant $sqrt 2$ where you wrote $sqrt n$
              $endgroup$
              – J. W. Tanner
              Mar 29 at 19:27










            • $begingroup$
              J.W.Tanner, yes, indeed, let your note be erratum.
              $endgroup$
              – farruhota
              Mar 29 at 19:59













            0












            0








            0





            $begingroup$

            You can restore the difference equation with roots $1-sqrt2$ and $1+sqrt2$:
            $$x^2-2x-1=0.$$
            Hence:
            $$a_n=2a_n-1+a_n-2, a_1=2,a_2=6,$$
            which has a solution:
            $$a_n=(1-sqrt2)^n+(1+sqrtn)^n.$$
            Obviously, it has all terms even.






            share|cite|improve this answer









            $endgroup$



            You can restore the difference equation with roots $1-sqrt2$ and $1+sqrt2$:
            $$x^2-2x-1=0.$$
            Hence:
            $$a_n=2a_n-1+a_n-2, a_1=2,a_2=6,$$
            which has a solution:
            $$a_n=(1-sqrt2)^n+(1+sqrtn)^n.$$
            Obviously, it has all terms even.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 29 at 15:22









            farruhotafarruhota

            21.8k2842




            21.8k2842











            • $begingroup$
              You must have meant $sqrt 2$ where you wrote $sqrt n$
              $endgroup$
              – J. W. Tanner
              Mar 29 at 19:27










            • $begingroup$
              J.W.Tanner, yes, indeed, let your note be erratum.
              $endgroup$
              – farruhota
              Mar 29 at 19:59
















            • $begingroup$
              You must have meant $sqrt 2$ where you wrote $sqrt n$
              $endgroup$
              – J. W. Tanner
              Mar 29 at 19:27










            • $begingroup$
              J.W.Tanner, yes, indeed, let your note be erratum.
              $endgroup$
              – farruhota
              Mar 29 at 19:59















            $begingroup$
            You must have meant $sqrt 2$ where you wrote $sqrt n$
            $endgroup$
            – J. W. Tanner
            Mar 29 at 19:27




            $begingroup$
            You must have meant $sqrt 2$ where you wrote $sqrt n$
            $endgroup$
            – J. W. Tanner
            Mar 29 at 19:27












            $begingroup$
            J.W.Tanner, yes, indeed, let your note be erratum.
            $endgroup$
            – farruhota
            Mar 29 at 19:59




            $begingroup$
            J.W.Tanner, yes, indeed, let your note be erratum.
            $endgroup$
            – farruhota
            Mar 29 at 19:59

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167229%2feven-number-binomial%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu