Inverse function that does not have a inverse function given by an integralConvergence of Integral Implies Uniform convergence of Equicontinuous FamilyHow to prove that this function is continuous at zero?Integral Estimate Using a Function and its InverseThe function is continuous but not uniformly continuous at $[0,1) cup (1,2]$.Show that $f$ is uniformly continuous if sequence function $f$ is uniformly convergentContinuous function that has limit at infinity is uniformly continuous (another viewpoint)Radial function and integralDoes the step function defined via a function $f$, converge (in $L^1$) to the function $f$?Finding an infimum and showing it is never obtained for a function on a normed vector space.Prove that $f * phi _n$ uniformly converges to $f$.

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Email Account under attack (really) - anything I can do?

What's the output of a record cartridge playing an out-of-speed record

The use of multiple foreign keys on same column in SQL Server

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

How can I make my BBEG immortal short of making them a Lich or Vampire?

What typically incentivizes a professor to change jobs to a lower ranking university?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

How to format long polynomial?

How does one intimidate enemies without having the capacity for violence?

Can I make popcorn with any corn?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Test whether all array elements are factors of a number

Have astronauts in space suits ever taken selfies? If so, how?

Is this a crack on the carbon frame?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Minkowski space

How to test if a transaction is standard without spending real money?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

What is the offset in a seaplane's hull?

How does strength of boric acid solution increase in presence of salicylic acid?

How is it possible to have an ability score that is less than 3?

Why not use SQL instead of GraphQL?



Inverse function that does not have a inverse function given by an integral


Convergence of Integral Implies Uniform convergence of Equicontinuous FamilyHow to prove that this function is continuous at zero?Integral Estimate Using a Function and its InverseThe function is continuous but not uniformly continuous at $[0,1) cup (1,2]$.Show that $f$ is uniformly continuous if sequence function $f$ is uniformly convergentContinuous function that has limit at infinity is uniformly continuous (another viewpoint)Radial function and integralDoes the step function defined via a function $f$, converge (in $L^1$) to the function $f$?Finding an infimum and showing it is never obtained for a function on a normed vector space.Prove that $f * phi _n$ uniformly converges to $f$.













0












$begingroup$


I have the following exercise:



1) Consider $X = left( (C[0,1], mathbbR), d_infty right) $ and
$Y = left( (C^1[0,1], mathbbR), d_infty right) $ and the operator
$Phi:X rightarrow Y$ given by
$$
Phi(f)(x) = int_0^xf(s);ds, ;;forall x in [0,1].
$$

Show that



(a) $Phi$ is uniformly continuous;



(b) $Phi$ has an inverse $Phi^-1$;



(c) $Phi^-1$ is not continuous;



(d) Consider now $X$ and
$Z = left( (C^1[0,1], mathbbR), d_1, infty right) $, where $d_1, infty (f,g)= d_infty(f,g) + d_infty(f',g')$, and the same operator $Phi : X rightarrow Z$.



With this metric $d_1, infty$, do we take $Phi^-1$ continuous?



So, I know which the Fundamental Theorem of Calculus assures me that $Phi$ belongs to Y. This implies that $Phi$ is well defined.



The proof of item (a) I had that
$$
| Phi(f)(x)-Phi(f)(y)|=
Big|int_0^xf(s);ds - int_0^yf(s);dsBig| =\
Big|int_0^xf(s);ds - int_0^xf(s);ds - int_x^yf(s);dsBig|=
Big|int_x^yf(s);dsBig| leq
int_x^y|f(s)|;ds.
$$

How $f: [0,1] rightarrow mathbbR$, $f in C[0,1]$, we know that $f$ is bounded, so there is $k in mathbbR_+$ that $|f(x)| leq k, forall x in [0,1]$.



Hence
$$
| Phi(f)(x)-Phi(f)(y)| leq int_x^y|f(s)|;ds leq int_x^yk;ds = kint_x^y;ds = k|y-x|.
$$

This implies that $Phi$ is Lipschitz and hence $Phi$ is uniformly continuous.



(b) I know by FTC which for given $fin X$, we have $Phi$ such that
$$ Phi'(f)(x)=
dfracddx Phi(f)(x) =
dfracddx int_0^xf(s);ds =
f(x), forall x in [0,1].$$



That is, the inverse of $Phi$ is $Phi^-1:Y rightarrow X$ given by $Phi^-1(Phi(f)) = (Phi(f))'=f$.



But I don't know how to ensure that $Phi^-1$ is a bijection function



But, I can't figure out to solve (b) (conclusion), (c) and (d).










share|cite|improve this question











$endgroup$











  • $begingroup$
    For (b), (c), (d), what have you tried and where are you stuck?
    $endgroup$
    – Saad
    Mar 29 at 16:47










  • $begingroup$
    @Saad for (b) I know by FTC which for given $f in X$, we have $Phi$ such that $Phi' (x) = f(x), forall x in [0,1]$. So I need to show that $Phi^-1$ given by $Phi^-1(Phi(f)) = f(x) forall x$. I think that is correct by FTC. But I don't have sure and I don't know how to ensure that $Phi$ is a bijection function.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 17:00
















0












$begingroup$


I have the following exercise:



1) Consider $X = left( (C[0,1], mathbbR), d_infty right) $ and
$Y = left( (C^1[0,1], mathbbR), d_infty right) $ and the operator
$Phi:X rightarrow Y$ given by
$$
Phi(f)(x) = int_0^xf(s);ds, ;;forall x in [0,1].
$$

Show that



(a) $Phi$ is uniformly continuous;



(b) $Phi$ has an inverse $Phi^-1$;



(c) $Phi^-1$ is not continuous;



(d) Consider now $X$ and
$Z = left( (C^1[0,1], mathbbR), d_1, infty right) $, where $d_1, infty (f,g)= d_infty(f,g) + d_infty(f',g')$, and the same operator $Phi : X rightarrow Z$.



With this metric $d_1, infty$, do we take $Phi^-1$ continuous?



So, I know which the Fundamental Theorem of Calculus assures me that $Phi$ belongs to Y. This implies that $Phi$ is well defined.



The proof of item (a) I had that
$$
| Phi(f)(x)-Phi(f)(y)|=
Big|int_0^xf(s);ds - int_0^yf(s);dsBig| =\
Big|int_0^xf(s);ds - int_0^xf(s);ds - int_x^yf(s);dsBig|=
Big|int_x^yf(s);dsBig| leq
int_x^y|f(s)|;ds.
$$

How $f: [0,1] rightarrow mathbbR$, $f in C[0,1]$, we know that $f$ is bounded, so there is $k in mathbbR_+$ that $|f(x)| leq k, forall x in [0,1]$.



Hence
$$
| Phi(f)(x)-Phi(f)(y)| leq int_x^y|f(s)|;ds leq int_x^yk;ds = kint_x^y;ds = k|y-x|.
$$

This implies that $Phi$ is Lipschitz and hence $Phi$ is uniformly continuous.



(b) I know by FTC which for given $fin X$, we have $Phi$ such that
$$ Phi'(f)(x)=
dfracddx Phi(f)(x) =
dfracddx int_0^xf(s);ds =
f(x), forall x in [0,1].$$



That is, the inverse of $Phi$ is $Phi^-1:Y rightarrow X$ given by $Phi^-1(Phi(f)) = (Phi(f))'=f$.



But I don't know how to ensure that $Phi^-1$ is a bijection function



But, I can't figure out to solve (b) (conclusion), (c) and (d).










share|cite|improve this question











$endgroup$











  • $begingroup$
    For (b), (c), (d), what have you tried and where are you stuck?
    $endgroup$
    – Saad
    Mar 29 at 16:47










  • $begingroup$
    @Saad for (b) I know by FTC which for given $f in X$, we have $Phi$ such that $Phi' (x) = f(x), forall x in [0,1]$. So I need to show that $Phi^-1$ given by $Phi^-1(Phi(f)) = f(x) forall x$. I think that is correct by FTC. But I don't have sure and I don't know how to ensure that $Phi$ is a bijection function.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 17:00














0












0








0





$begingroup$


I have the following exercise:



1) Consider $X = left( (C[0,1], mathbbR), d_infty right) $ and
$Y = left( (C^1[0,1], mathbbR), d_infty right) $ and the operator
$Phi:X rightarrow Y$ given by
$$
Phi(f)(x) = int_0^xf(s);ds, ;;forall x in [0,1].
$$

Show that



(a) $Phi$ is uniformly continuous;



(b) $Phi$ has an inverse $Phi^-1$;



(c) $Phi^-1$ is not continuous;



(d) Consider now $X$ and
$Z = left( (C^1[0,1], mathbbR), d_1, infty right) $, where $d_1, infty (f,g)= d_infty(f,g) + d_infty(f',g')$, and the same operator $Phi : X rightarrow Z$.



With this metric $d_1, infty$, do we take $Phi^-1$ continuous?



So, I know which the Fundamental Theorem of Calculus assures me that $Phi$ belongs to Y. This implies that $Phi$ is well defined.



The proof of item (a) I had that
$$
| Phi(f)(x)-Phi(f)(y)|=
Big|int_0^xf(s);ds - int_0^yf(s);dsBig| =\
Big|int_0^xf(s);ds - int_0^xf(s);ds - int_x^yf(s);dsBig|=
Big|int_x^yf(s);dsBig| leq
int_x^y|f(s)|;ds.
$$

How $f: [0,1] rightarrow mathbbR$, $f in C[0,1]$, we know that $f$ is bounded, so there is $k in mathbbR_+$ that $|f(x)| leq k, forall x in [0,1]$.



Hence
$$
| Phi(f)(x)-Phi(f)(y)| leq int_x^y|f(s)|;ds leq int_x^yk;ds = kint_x^y;ds = k|y-x|.
$$

This implies that $Phi$ is Lipschitz and hence $Phi$ is uniformly continuous.



(b) I know by FTC which for given $fin X$, we have $Phi$ such that
$$ Phi'(f)(x)=
dfracddx Phi(f)(x) =
dfracddx int_0^xf(s);ds =
f(x), forall x in [0,1].$$



That is, the inverse of $Phi$ is $Phi^-1:Y rightarrow X$ given by $Phi^-1(Phi(f)) = (Phi(f))'=f$.



But I don't know how to ensure that $Phi^-1$ is a bijection function



But, I can't figure out to solve (b) (conclusion), (c) and (d).










share|cite|improve this question











$endgroup$




I have the following exercise:



1) Consider $X = left( (C[0,1], mathbbR), d_infty right) $ and
$Y = left( (C^1[0,1], mathbbR), d_infty right) $ and the operator
$Phi:X rightarrow Y$ given by
$$
Phi(f)(x) = int_0^xf(s);ds, ;;forall x in [0,1].
$$

Show that



(a) $Phi$ is uniformly continuous;



(b) $Phi$ has an inverse $Phi^-1$;



(c) $Phi^-1$ is not continuous;



(d) Consider now $X$ and
$Z = left( (C^1[0,1], mathbbR), d_1, infty right) $, where $d_1, infty (f,g)= d_infty(f,g) + d_infty(f',g')$, and the same operator $Phi : X rightarrow Z$.



With this metric $d_1, infty$, do we take $Phi^-1$ continuous?



So, I know which the Fundamental Theorem of Calculus assures me that $Phi$ belongs to Y. This implies that $Phi$ is well defined.



The proof of item (a) I had that
$$
| Phi(f)(x)-Phi(f)(y)|=
Big|int_0^xf(s);ds - int_0^yf(s);dsBig| =\
Big|int_0^xf(s);ds - int_0^xf(s);ds - int_x^yf(s);dsBig|=
Big|int_x^yf(s);dsBig| leq
int_x^y|f(s)|;ds.
$$

How $f: [0,1] rightarrow mathbbR$, $f in C[0,1]$, we know that $f$ is bounded, so there is $k in mathbbR_+$ that $|f(x)| leq k, forall x in [0,1]$.



Hence
$$
| Phi(f)(x)-Phi(f)(y)| leq int_x^y|f(s)|;ds leq int_x^yk;ds = kint_x^y;ds = k|y-x|.
$$

This implies that $Phi$ is Lipschitz and hence $Phi$ is uniformly continuous.



(b) I know by FTC which for given $fin X$, we have $Phi$ such that
$$ Phi'(f)(x)=
dfracddx Phi(f)(x) =
dfracddx int_0^xf(s);ds =
f(x), forall x in [0,1].$$



That is, the inverse of $Phi$ is $Phi^-1:Y rightarrow X$ given by $Phi^-1(Phi(f)) = (Phi(f))'=f$.



But I don't know how to ensure that $Phi^-1$ is a bijection function



But, I can't figure out to solve (b) (conclusion), (c) and (d).







analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 29 at 20:55









Martín-Blas Pérez Pinilla

35.1k42971




35.1k42971










asked Mar 29 at 16:45









Thiago AlexandreThiago Alexandre

1347




1347











  • $begingroup$
    For (b), (c), (d), what have you tried and where are you stuck?
    $endgroup$
    – Saad
    Mar 29 at 16:47










  • $begingroup$
    @Saad for (b) I know by FTC which for given $f in X$, we have $Phi$ such that $Phi' (x) = f(x), forall x in [0,1]$. So I need to show that $Phi^-1$ given by $Phi^-1(Phi(f)) = f(x) forall x$. I think that is correct by FTC. But I don't have sure and I don't know how to ensure that $Phi$ is a bijection function.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 17:00

















  • $begingroup$
    For (b), (c), (d), what have you tried and where are you stuck?
    $endgroup$
    – Saad
    Mar 29 at 16:47










  • $begingroup$
    @Saad for (b) I know by FTC which for given $f in X$, we have $Phi$ such that $Phi' (x) = f(x), forall x in [0,1]$. So I need to show that $Phi^-1$ given by $Phi^-1(Phi(f)) = f(x) forall x$. I think that is correct by FTC. But I don't have sure and I don't know how to ensure that $Phi$ is a bijection function.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 17:00
















$begingroup$
For (b), (c), (d), what have you tried and where are you stuck?
$endgroup$
– Saad
Mar 29 at 16:47




$begingroup$
For (b), (c), (d), what have you tried and where are you stuck?
$endgroup$
– Saad
Mar 29 at 16:47












$begingroup$
@Saad for (b) I know by FTC which for given $f in X$, we have $Phi$ such that $Phi' (x) = f(x), forall x in [0,1]$. So I need to show that $Phi^-1$ given by $Phi^-1(Phi(f)) = f(x) forall x$. I think that is correct by FTC. But I don't have sure and I don't know how to ensure that $Phi$ is a bijection function.
$endgroup$
– Thiago Alexandre
Mar 29 at 17:00





$begingroup$
@Saad for (b) I know by FTC which for given $f in X$, we have $Phi$ such that $Phi' (x) = f(x), forall x in [0,1]$. So I need to show that $Phi^-1$ given by $Phi^-1(Phi(f)) = f(x) forall x$. I think that is correct by FTC. But I don't have sure and I don't know how to ensure that $Phi$ is a bijection function.
$endgroup$
– Thiago Alexandre
Mar 29 at 17:00











1 Answer
1






active

oldest

votes


















1












$begingroup$

(b) $Phi$ is injective but not surjective. For all $f$ we have $Phi(f)(0) = 0$. Obviously, $Phi(X)$ is strictly smaller than $Y$. But is true that (I will use another name) $Psi(f) = f'$ verifies $forall fin X: Psi(Phi((f)) = f$ and that $Psi$ is defined in the whole $Y$ (is an extension of $Phi^-1$).



(c) Take a sequence $f_nin Y$ s.t. $f_nto fin Y$ uniformly but $f_n'notto f'$ uniformly.



(d) I will use again the name $Psi$:
$$
d_infty(Psi(f),Psi(g)) = d_infty(f',g')le d_1,infty(cdots).
$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 23:23











  • $begingroup$
    I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 2:19






  • 1




    $begingroup$
    @ThiagoAlexandre, see mathcounterexamples.net/….
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:40






  • 1




    $begingroup$
    @ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:43










  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 17:48











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167341%2finverse-function-that-does-not-have-a-inverse-function-given-by-an-integral%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

(b) $Phi$ is injective but not surjective. For all $f$ we have $Phi(f)(0) = 0$. Obviously, $Phi(X)$ is strictly smaller than $Y$. But is true that (I will use another name) $Psi(f) = f'$ verifies $forall fin X: Psi(Phi((f)) = f$ and that $Psi$ is defined in the whole $Y$ (is an extension of $Phi^-1$).



(c) Take a sequence $f_nin Y$ s.t. $f_nto fin Y$ uniformly but $f_n'notto f'$ uniformly.



(d) I will use again the name $Psi$:
$$
d_infty(Psi(f),Psi(g)) = d_infty(f',g')le d_1,infty(cdots).
$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 23:23











  • $begingroup$
    I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 2:19






  • 1




    $begingroup$
    @ThiagoAlexandre, see mathcounterexamples.net/….
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:40






  • 1




    $begingroup$
    @ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:43










  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 17:48















1












$begingroup$

(b) $Phi$ is injective but not surjective. For all $f$ we have $Phi(f)(0) = 0$. Obviously, $Phi(X)$ is strictly smaller than $Y$. But is true that (I will use another name) $Psi(f) = f'$ verifies $forall fin X: Psi(Phi((f)) = f$ and that $Psi$ is defined in the whole $Y$ (is an extension of $Phi^-1$).



(c) Take a sequence $f_nin Y$ s.t. $f_nto fin Y$ uniformly but $f_n'notto f'$ uniformly.



(d) I will use again the name $Psi$:
$$
d_infty(Psi(f),Psi(g)) = d_infty(f',g')le d_1,infty(cdots).
$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 23:23











  • $begingroup$
    I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 2:19






  • 1




    $begingroup$
    @ThiagoAlexandre, see mathcounterexamples.net/….
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:40






  • 1




    $begingroup$
    @ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:43










  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 17:48













1












1








1





$begingroup$

(b) $Phi$ is injective but not surjective. For all $f$ we have $Phi(f)(0) = 0$. Obviously, $Phi(X)$ is strictly smaller than $Y$. But is true that (I will use another name) $Psi(f) = f'$ verifies $forall fin X: Psi(Phi((f)) = f$ and that $Psi$ is defined in the whole $Y$ (is an extension of $Phi^-1$).



(c) Take a sequence $f_nin Y$ s.t. $f_nto fin Y$ uniformly but $f_n'notto f'$ uniformly.



(d) I will use again the name $Psi$:
$$
d_infty(Psi(f),Psi(g)) = d_infty(f',g')le d_1,infty(cdots).
$$






share|cite|improve this answer









$endgroup$



(b) $Phi$ is injective but not surjective. For all $f$ we have $Phi(f)(0) = 0$. Obviously, $Phi(X)$ is strictly smaller than $Y$. But is true that (I will use another name) $Psi(f) = f'$ verifies $forall fin X: Psi(Phi((f)) = f$ and that $Psi$ is defined in the whole $Y$ (is an extension of $Phi^-1$).



(c) Take a sequence $f_nin Y$ s.t. $f_nto fin Y$ uniformly but $f_n'notto f'$ uniformly.



(d) I will use again the name $Psi$:
$$
d_infty(Psi(f),Psi(g)) = d_infty(f',g')le d_1,infty(cdots).
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 29 at 20:53









Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

35.1k42971




35.1k42971











  • $begingroup$
    Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 23:23











  • $begingroup$
    I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 2:19






  • 1




    $begingroup$
    @ThiagoAlexandre, see mathcounterexamples.net/….
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:40






  • 1




    $begingroup$
    @ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:43










  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 17:48
















  • $begingroup$
    Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
    $endgroup$
    – Thiago Alexandre
    Mar 29 at 23:23











  • $begingroup$
    I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 2:19






  • 1




    $begingroup$
    @ThiagoAlexandre, see mathcounterexamples.net/….
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:40






  • 1




    $begingroup$
    @ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
    $endgroup$
    – Martín-Blas Pérez Pinilla
    Mar 30 at 10:43










  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Thiago Alexandre
    Mar 30 at 17:48















$begingroup$
Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
$endgroup$
– Thiago Alexandre
Mar 29 at 23:23





$begingroup$
Thanks for your help me.I will focus first on item b. After that I will to (c) and (d). Well, You said for me that 1) $Phi$ is injective 2) $Phi$ is not surjective. 3) $forall f in X$, we have $Phi(f)(0) = 0$. 4) $Phi(X) subsetneqq Y$. 5) we have an extension $Psi $ of $Phi^-1$ that $Psi (Phi (f)) = f$. I can understand 3) and 5). The assertive 3) is obvious. And 5) I know that is a FTC but I can't get all.
$endgroup$
– Thiago Alexandre
Mar 29 at 23:23













$begingroup$
I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
$endgroup$
– Thiago Alexandre
Mar 30 at 2:19




$begingroup$
I got it the item (b). You said for me defined $Psi: Y rightarrow X$ given by $Psi (f) = f'$. So with this we obtain $Phi circ Psi = Id_Y$ and $Psi circ Phi = Id_X$. The both we get by FTC. Now, I don't know how sequence $f_n in Y$ we need to take for show that $Psi = Phi^-1$ is not continuous.
$endgroup$
– Thiago Alexandre
Mar 30 at 2:19




1




1




$begingroup$
@ThiagoAlexandre, see mathcounterexamples.net/….
$endgroup$
– Martín-Blas Pérez Pinilla
Mar 30 at 10:40




$begingroup$
@ThiagoAlexandre, see mathcounterexamples.net/….
$endgroup$
– Martín-Blas Pérez Pinilla
Mar 30 at 10:40




1




1




$begingroup$
@ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
$endgroup$
– Martín-Blas Pérez Pinilla
Mar 30 at 10:43




$begingroup$
@ThiagoAlexandre, $Phi circPsi = Id_Y$ is actually false (again, because $Phi(f)(0) = 0$).
$endgroup$
– Martín-Blas Pérez Pinilla
Mar 30 at 10:43












$begingroup$
Thanks. I got it.
$endgroup$
– Thiago Alexandre
Mar 30 at 17:48




$begingroup$
Thanks. I got it.
$endgroup$
– Thiago Alexandre
Mar 30 at 17:48

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167341%2finverse-function-that-does-not-have-a-inverse-function-given-by-an-integral%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu