Integral with two distinct roots in them, such as: $int fracsqrtxx^2(sqrtx+1+sqrtx)dx$Indefinite integral $intfracdxx^2+2$Simple integral with a logarithmic function: $intfracln xsqrt1-x,mathrm dx$Integral $int fracsqrt16-x^2x mathrmdx$Problem with Indefinite Integral $intfrac cos^4xsin^3x dx$Problem with Indefinite Integral $int frac cos^5x 16(cos^4x+sin^4x)dx$How do I solve the integral $intfrac1-sqrt2x+31+sqrt2x+3dx$ with help substitution?Solving trigonometric indefinite integral $int fracdxsqrttan x $Solving Indefinite Integral $intfracx^2sqrt1-xdx$Computing a double integral: $int _0^frac14int _sqrtx^frac12:fraccosleft(pi yright)y^2~mathrm dy~mathrm dx$Does my book lie about $int fracarccos(fracx2)sqrt4-x^2dx$?

How does one intimidate enemies without having the capacity for violence?

Theorem, big Paralist and Amsart

Arthur Somervell: 1000 Exercises - Meaning of this notation

How to format long polynomial?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Why does Kotter return in Welcome Back Kotter?

What's the output of a record cartridge playing an out-of-speed record

How does strength of boric acid solution increase in presence of salicylic acid?

Can divisibility rules for digits be generalized to sum of digits

Python: next in for loop

Languages that we cannot (dis)prove to be Context-Free

Modeling an IPv4 Address

Today is the Center

How to write a macro that is braces sensitive?

Minkowski space

Smoothness of finite-dimensional functional calculus

How do I create uniquely male characters?

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?

How can bays and straits be determined in a procedurally generated map?

strToHex ( string to its hex representation as string)

Fencing style for blades that can attack from a distance

Dragon forelimb placement

Why do falling prices hurt debtors?

Writing rule stating superpower from different root cause is bad writing



Integral with two distinct roots in them, such as: $int fracsqrtxx^2(sqrtx+1+sqrtx)dx$


Indefinite integral $intfracdxx^2+2$Simple integral with a logarithmic function: $intfracln xsqrt1-x,mathrm dx$Integral $int fracsqrt16-x^2x mathrmdx$Problem with Indefinite Integral $intfrac cos^4xsin^3x} dx$Problem with Indefinite Integral $int frac cos^5x 16(cos^4x+sin^4x)dx$How do I solve the integral $intfrac{1-sqrt2x+31+sqrt2x+3dx$ with help substitution?Solving trigonometric indefinite integral $int fracdxsqrttan x $Solving Indefinite Integral $intfracx^2sqrt1-xdx$Computing a double integral: $int _0^frac14int _sqrtx^frac12:fraccosleft(pi yright)y^2~mathrm dy~mathrm dx$Does my book lie about $int fracarccos(fracx2)sqrt4-x^2dx$?













0












$begingroup$


I'm getting familiar with basic indefinite integrals and these are the hardest ones I've met so far:



  1. $int fracsqrtxx^2(sqrtx+1+sqrtx)dx$


  2. $int fracsqrt[3]x+2-sqrt[3]xx^2(sqrt[3]x+2+sqrt[3]x)$


Any hints? Please note that the course I am taking does not anticipate usage of hyperbolic functions. I am not familiar with them.



The first integral I attempted:



$int fracsqrtxx^2(sqrtx+1+sqrtx)dx = int fracsqrtx(sqrtx+1-sqrtx)x^2(sqrtx+1+sqrtx)(sqrtx+1-sqrtx)dx = int fracsqrtxsqrtx+1-xx^2dx$



Now I can split it into two integrals. Problem is with:



$int fracsqrtxsqrtx+1x^2dx$



and the major problem is that I don't know how to solve integrals that have some distinct roots with different values inside those roots. Second task's integral seems even harder.



If speaking of "different values under roots", I am only familiar with how to solve such integrals:



$int frac(sqrtfracx+2x-1-1)^23(sqrtfracx+2x-1+2)dx$



because there's simple algorithm that I can follow to solve it.



Hints, tips, advices appreciated. Thanks.



EDIT: $int fracsqrtxsqrtx+1x^2dx = int fracsqrtx^2+xx^2dx = int fracx^2 + x x^2sqrtx^2+xdx = int fracx+1xsqrtx^2+xdx$



And now with Euler's substitution should work?










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    I'm getting familiar with basic indefinite integrals and these are the hardest ones I've met so far:



    1. $int fracsqrtxx^2(sqrtx+1+sqrtx)dx$


    2. $int fracsqrt[3]x+2-sqrt[3]xx^2(sqrt[3]x+2+sqrt[3]x)$


    Any hints? Please note that the course I am taking does not anticipate usage of hyperbolic functions. I am not familiar with them.



    The first integral I attempted:



    $int fracsqrtxx^2(sqrtx+1+sqrtx)dx = int fracsqrtx(sqrtx+1-sqrtx)x^2(sqrtx+1+sqrtx)(sqrtx+1-sqrtx)dx = int fracsqrtxsqrtx+1-xx^2dx$



    Now I can split it into two integrals. Problem is with:



    $int fracsqrtxsqrtx+1x^2dx$



    and the major problem is that I don't know how to solve integrals that have some distinct roots with different values inside those roots. Second task's integral seems even harder.



    If speaking of "different values under roots", I am only familiar with how to solve such integrals:



    $int frac(sqrtfracx+2x-1-1)^23(sqrtfracx+2x-1+2)dx$



    because there's simple algorithm that I can follow to solve it.



    Hints, tips, advices appreciated. Thanks.



    EDIT: $int fracsqrtxsqrtx+1x^2dx = int fracsqrtx^2+xx^2dx = int fracx^2 + x x^2sqrtx^2+xdx = int fracx+1xsqrtx^2+xdx$



    And now with Euler's substitution should work?










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      I'm getting familiar with basic indefinite integrals and these are the hardest ones I've met so far:



      1. $int fracsqrtxx^2(sqrtx+1+sqrtx)dx$


      2. $int fracsqrt[3]x+2-sqrt[3]xx^2(sqrt[3]x+2+sqrt[3]x)$


      Any hints? Please note that the course I am taking does not anticipate usage of hyperbolic functions. I am not familiar with them.



      The first integral I attempted:



      $int fracsqrtxx^2(sqrtx+1+sqrtx)dx = int fracsqrtx(sqrtx+1-sqrtx)x^2(sqrtx+1+sqrtx)(sqrtx+1-sqrtx)dx = int fracsqrtxsqrtx+1-xx^2dx$



      Now I can split it into two integrals. Problem is with:



      $int fracsqrtxsqrtx+1x^2dx$



      and the major problem is that I don't know how to solve integrals that have some distinct roots with different values inside those roots. Second task's integral seems even harder.



      If speaking of "different values under roots", I am only familiar with how to solve such integrals:



      $int frac(sqrtfracx+2x-1-1)^23(sqrtfracx+2x-1+2)dx$



      because there's simple algorithm that I can follow to solve it.



      Hints, tips, advices appreciated. Thanks.



      EDIT: $int fracsqrtxsqrtx+1x^2dx = int fracsqrtx^2+xx^2dx = int fracx^2 + x x^2sqrtx^2+xdx = int fracx+1xsqrtx^2+xdx$



      And now with Euler's substitution should work?










      share|cite|improve this question











      $endgroup$




      I'm getting familiar with basic indefinite integrals and these are the hardest ones I've met so far:



      1. $int fracsqrtxx^2(sqrtx+1+sqrtx)dx$


      2. $int fracsqrt[3]x+2-sqrt[3]xx^2(sqrt[3]x+2+sqrt[3]x)$


      Any hints? Please note that the course I am taking does not anticipate usage of hyperbolic functions. I am not familiar with them.



      The first integral I attempted:



      $int fracsqrtxx^2(sqrtx+1+sqrtx)dx = int fracsqrtx(sqrtx+1-sqrtx)x^2(sqrtx+1+sqrtx)(sqrtx+1-sqrtx)dx = int fracsqrtxsqrtx+1-xx^2dx$



      Now I can split it into two integrals. Problem is with:



      $int fracsqrtxsqrtx+1x^2dx$



      and the major problem is that I don't know how to solve integrals that have some distinct roots with different values inside those roots. Second task's integral seems even harder.



      If speaking of "different values under roots", I am only familiar with how to solve such integrals:



      $int frac(sqrtfracx+2x-1-1)^23(sqrtfracx+2x-1+2)dx$



      because there's simple algorithm that I can follow to solve it.



      Hints, tips, advices appreciated. Thanks.



      EDIT: $int fracsqrtxsqrtx+1x^2dx = int fracsqrtx^2+xx^2dx = int fracx^2 + x x^2sqrtx^2+xdx = int fracx+1xsqrtx^2+xdx$



      And now with Euler's substitution should work?







      calculus integration indefinite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 29 at 17:10







      weno

















      asked Mar 29 at 17:00









      wenoweno

      39611




      39611




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: For the integral $$int fracsqrtx^2+xx^2dx$$ substitute $$sqrtx^2+x=x+t$$ it is the Eulerian substitution.
          Then we get by squaring $$x=fract^21-2t$$ and $$dx=-2,frac t left( -1+t right) left( -1+2,t right) ^2dt$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167353%2fintegral-with-two-distinct-roots-in-them-such-as-int-frac-sqrtxx2-sq%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Hint: For the integral $$int fracsqrtx^2+xx^2dx$$ substitute $$sqrtx^2+x=x+t$$ it is the Eulerian substitution.
            Then we get by squaring $$x=fract^21-2t$$ and $$dx=-2,frac t left( -1+t right) left( -1+2,t right) ^2dt$$






            share|cite|improve this answer











            $endgroup$

















              1












              $begingroup$

              Hint: For the integral $$int fracsqrtx^2+xx^2dx$$ substitute $$sqrtx^2+x=x+t$$ it is the Eulerian substitution.
              Then we get by squaring $$x=fract^21-2t$$ and $$dx=-2,frac t left( -1+t right) left( -1+2,t right) ^2dt$$






              share|cite|improve this answer











              $endgroup$















                1












                1








                1





                $begingroup$

                Hint: For the integral $$int fracsqrtx^2+xx^2dx$$ substitute $$sqrtx^2+x=x+t$$ it is the Eulerian substitution.
                Then we get by squaring $$x=fract^21-2t$$ and $$dx=-2,frac t left( -1+t right) left( -1+2,t right) ^2dt$$






                share|cite|improve this answer











                $endgroup$



                Hint: For the integral $$int fracsqrtx^2+xx^2dx$$ substitute $$sqrtx^2+x=x+t$$ it is the Eulerian substitution.
                Then we get by squaring $$x=fract^21-2t$$ and $$dx=-2,frac t left( -1+t right) left( -1+2,t right) ^2dt$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 29 at 17:46

























                answered Mar 29 at 17:19









                Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                78.6k42867




                78.6k42867



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167353%2fintegral-with-two-distinct-roots-in-them-such-as-int-frac-sqrtxx2-sq%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                    Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε